I am using PHP\'s mcrypt
library and the AES-256
(rijndael) algorithm, which requires both a key + initialization vector to run.
My logical br
Do not use hashed password as a single source for key and IV. As a rule of thumb, you should generate random IV EVERY TIME you update encrypted data and store IV with this data. Key can be reused multiple times, but use salted hashing and store salt with data too.
If you just hash user passwords and use it as encryption keys, users with same passwords will have same keys. Depending on your database structure and intruder access rights there could be some unfortunate cases when users with same passwords can be detected. Add at least unique username to this hash.
If you do not change IV for every data update, information about data changes can be leaked. With CBC or CFB mode identical first plaintext blocks will be encrypted to identical ciphertext until first plaintext change, so position of this change can be determined.
If you're using the EBP mode of the block cipher, or most of the stream ciphers, identical key+IV combinations on different plaintexts will offer the attackers a direct view on the XOR result of the key. This by extension reveals the key itself and to some extent the password.
But do I mean IVs are definitely necessary? No. As long as you change your password each and every time on your next plaintext block(even the same block the second time), you're completely fine without IVs. In fact, all that an IV does is the automation of the above process.
Initialization Vector (IV) is not a key at all, and is not secret. In fact, it is often exposed (e.g. prepended to the encrypted data). It is used as an additional random input to the encryption algorithm so that the result of encrypting the same clear data is different each time you use a different IV. This way, statistics cannot be gathered on the encrypted data. It does not "improve" the encryption strength by itself.
You can look here for nice diagrams showing how and why IV is used.
No, in fact an IV is vital in most implementations. The IV is also considered to be safe for public use, for instance the IV is transmitted in plain text for WEP and WPA1/WPA2. The problem arises when this same key+iv is used to encrypt the same plain text. The cipher texts will be identical, unless you use an IV. If an attacker can encrypt arbitrary plain text with this key, and then view the cipher text. This is a much faster way of brute forcing other cipher text that the attacker has obtained.
Not only that, the IV must be random or you would be in violation of CWE-329. The reason why this is a problem is a bit more subtle and I didn't get it at first. You didn't mention this, but i hope you are using either the CBC or CMAC modes
The use of a hash function on a password is nearly identical to using a String2Key function. This is a solid design so long as an attacker can't use SQL Injection to obtain the key.