How to use ModelCheckpoint with custom metrics in Keras?

前端 未结 1 921
一向
一向 2021-02-05 08:17

Is it possible to use custom metrics in the ModelCheckpoint callback?

相关标签:
1条回答
  • 2021-02-05 08:33

    Yes, it is possible.

    Define the custom metrics as described in the documentation:

    import keras.backend as K
    
    def mean_pred(y_true, y_pred):
        return K.mean(y_pred)
    
    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['accuracy', mean_pred])
    

    To check all available metrics:

    print(model.metrics_names)
    > ['loss', 'acc', 'mean_pred']
    

    Pass the metric name to ModelCheckpoint through monitor. If you want the metric calculated in the validation, use the val_ prefix.

    ModelCheckpoint(weights.{epoch:02d}-{val_mean_pred:.2f}.hdf5,
                    monitor='val_mean_pred',
                    save_best_only=True,
                    save_weights_only=True,
                    mode='max',
                    period=1)
    

    Don't use mode='auto' for custom metrics. Understand why here.


    Why am I answering my own question? Check this.

    0 讨论(0)
提交回复
热议问题