I want to store bits in an array (like structure). So I can follow either of the following two approaches
Approach number 1 (AN 1)
struct BIT
{
int da
Approach number 1 will most likely be compiled as an array of 4-byte integers, and one bit of each will be used to store your data. Theoretically a smart compiler could optimize this, but I wouldn't count on it.
Is there a reason you don't want to use std::bitset
?
bitset has more operations
To quote cplusplus.com's page on bitset, "The class is very similar to a regular array, but optimizing for space allocation". If your ints are 4 bytes, a bitset uses 32 times less space.
Even doing bool bits[100]
, as sbi suggested, is still worse than bitset, because most implementations have >= 1-byte bools.
If, for reasons of intellectual curiosity only, you wanted to implement your own bitset, you could do so using bit masks:
typedef struct {
unsigned char bytes[100];
} MyBitset;
bool getBit(MyBitset *bitset, int index)
{
int whichByte = index / 8;
return bitset->bytes[whichByte] && (1 << (index = % 8));
}
bool setBit(MyBitset *bitset, int index, bool newVal)
{
int whichByte = index / 8;
if (newVal)
{
bitset->bytes[whichByte] |= (1 << (index = % 8));
}
else
{
bitset->bytes[whichByte] &= ~(1 << (index = % 8));
}
}
(Sorry for using a struct instead of a class by the way. I'm thinking in straight C because I'm in the middle of a low-level assignment for school. Obviously two huge benefits of using a class are operator overloading and the ability to have a variable-sized array.)
A good choice depends on how you're going to use the bits.
std::bitset<N>
is of fixed size. Visual C++ 10.0 is non-conforming wrt. to constructors; in general you have to provide a workaround. This was, ironically, due to what Microsoft thought was a bug-fix -- they introduced a constructor taking int
argument, as I recall.
std::vector<bool>
is optimized in much the same way as std::bitset
. Cost: indexing doesn't directly provide a reference (there are no references to individual bits in C++), but instead returns a proxy object -- which isn't something you notice until you try to use it as a reference. Advantage: minimal storage, and the vector can be resized as required.
Simply using e.g. unsigned
is also an option, if you're going to deal with a small number of bits (in practice, 32 or less, although the formal guarantee is just 16 bits).
Finally, ALL UPPERCASE identifiers are by convention (except Microsoft) reserved for macros, in order to reduce the probability of name collisions. It's therefore a good idea to not use ALL UPPERCASE identifiers for anything else than macros. And to always use ALL UPPERCASE identifiers for macros (this also makes it easier to recognize them).
Cheers & hth.,
Because approach nr. 2 actually uses 100 bits of storage, plus some very minor (constant) overhead, while nr. 1 typically uses four bytes of storage per Bit
structure. In general, a struct
is at least one byte large per the C++ standard.
#include <bitset>
#include <iostream>
struct Bit { int data : 1; };
int main()
{
Bit a[100];
std::bitset<100> b;
std::cout << sizeof(a) << "\n";
std::cout << sizeof(b) << "\n";
}
prints
400
16
Apart from this, bitset wraps your bit array in a nice object representation with many useful operations.