Standard Normal Distribution z-value function in C#

前端 未结 5 919
日久生厌
日久生厌 2021-02-05 08:04

I been looking at the recent blog post by Jeff Atwood on Alternate Sorting Orders. I tried to convert the code in the post to C# but I ran into an issue. There is no function in

相关标签:
5条回答
  • 2021-02-05 08:14

    For a newer version of MathNet

        //standard normal cumulative distribution function
        static double F(double x)
        {
            MathNet.Numerics.Distributions.Normal result = new MathNet.Numerics.Distributions.Normal();
            return result.CumulativeDistribution(x);
        }
    
    0 讨论(0)
  • 2021-02-05 08:15

    Here's a C# translation of the normal quantile C code used in the stats program R.

    /// <summary>
    /// Quantile function (Inverse CDF) for the normal distribution.
    /// </summary>
    /// <param name="p">Probability.</param>
    /// <param name="mu">Mean of normal distribution.</param>
    /// <param name="sigma">Standard deviation of normal distribution.</param>
    /// <param name="lower_tail">If true, probability is P[X <= x], otherwise P[X > x].</param>
    /// <param name="log_p">If true, probabilities are given as log(p).</param>
    /// <returns>P[X <= x] where x ~ N(mu,sigma^2)</returns>
    /// <remarks>See https://svn.r-project.org/R/trunk/src/nmath/qnorm.c</remarks>
    public static double QNorm(double p, double mu, double sigma, bool lower_tail, bool log_p)
    {
      if (double.IsNaN(p) || double.IsNaN(mu) || double.IsNaN(sigma)) return (p + mu + sigma);
      double ans;
      bool isBoundaryCase = R_Q_P01_boundaries(p, double.NegativeInfinity, double.PositiveInfinity, lower_tail, log_p, out ans);
      if (isBoundaryCase) return (ans);
      if (sigma < 0) return (double.NaN);
      if (sigma == 0) return (mu);
    
      double p_ = R_DT_qIv(p, lower_tail, log_p);
      double q = p_ - 0.5;
      double r, val;
    
      if (Math.Abs(q) <= 0.425)  // 0.075 <= p <= 0.925
      {
        r = .180625 - q * q;
        val = q * (((((((r * 2509.0809287301226727 +
                   33430.575583588128105) * r + 67265.770927008700853) * r +
                 45921.953931549871457) * r + 13731.693765509461125) * r +
               1971.5909503065514427) * r + 133.14166789178437745) * r +
             3.387132872796366608)
        / (((((((r * 5226.495278852854561 +
                 28729.085735721942674) * r + 39307.89580009271061) * r +
               21213.794301586595867) * r + 5394.1960214247511077) * r +
             687.1870074920579083) * r + 42.313330701600911252) * r + 1.0);
      }
      else
      {
        r = q > 0 ? R_DT_CIv(p, lower_tail, log_p) : p_;
        r = Math.Sqrt(-((log_p && ((lower_tail && q <= 0) || (!lower_tail && q > 0))) ? p : Math.Log(r)));
    
        if (r <= 5)              // <==> min(p,1-p) >= exp(-25) ~= 1.3888e-11
        {
          r -= 1.6;
          val = (((((((r * 7.7454501427834140764e-4 +
                  .0227238449892691845833) * r + .24178072517745061177) *
                r + 1.27045825245236838258) * r +
               3.64784832476320460504) * r + 5.7694972214606914055) *
             r + 4.6303378461565452959) * r +
            1.42343711074968357734)
           / (((((((r *
                    1.05075007164441684324e-9 + 5.475938084995344946e-4) *
                   r + .0151986665636164571966) * r +
                  .14810397642748007459) * r + .68976733498510000455) *
                r + 1.6763848301838038494) * r +
               2.05319162663775882187) * r + 1.0);
        }
        else                     // very close to  0 or 1 
        {
          r -= 5.0;
          val = (((((((r * 2.01033439929228813265e-7 +
                  2.71155556874348757815e-5) * r +
                 .0012426609473880784386) * r + .026532189526576123093) *
               r + .29656057182850489123) * r +
              1.7848265399172913358) * r + 5.4637849111641143699) *
            r + 6.6579046435011037772)
           / (((((((r *
                    2.04426310338993978564e-15 + 1.4215117583164458887e-7) *
                   r + 1.8463183175100546818e-5) * r +
                  7.868691311456132591e-4) * r + .0148753612908506148525)
                * r + .13692988092273580531) * r +
               .59983220655588793769) * r + 1.0);
        }
        if (q < 0.0) val = -val;
      }
    
      return (mu + sigma * val);
    }
    

    Some helper methods:

    private static bool R_Q_P01_boundaries(double p, double _LEFT_, double _RIGHT_, bool lower_tail, bool log_p, out double ans)
    {
      if (log_p)
      {
        if (p > 0.0)
        {
          ans = double.NaN;
          return (true);
        }
        if (p == 0.0)
        {
          ans = lower_tail ? _RIGHT_ : _LEFT_;
          return (true);
        }
        if (p == double.NegativeInfinity)
        {
          ans = lower_tail ? _LEFT_ : _RIGHT_;
          return (true);
        }
      }
      else
      {
        if (p < 0.0 || p > 1.0)
        {
          ans = double.NaN;
          return (true);
        }
        if (p == 0.0)
        {
          ans = lower_tail ? _LEFT_ : _RIGHT_;
          return (true);
        }
        if (p == 1.0)
        {
          ans = lower_tail ? _RIGHT_ : _LEFT_;
          return (true);
        }
      }
      ans = double.NaN;
      return (false);
    }
    
    private static double R_DT_qIv(double p, bool lower_tail, bool log_p)
    {
      return (log_p ? (lower_tail ? Math.Exp(p) : -ExpM1(p)) : R_D_Lval(p, lower_tail));
    }
    
    private static double R_DT_CIv(double p, bool lower_tail, bool log_p)
    {
      return (log_p ? (lower_tail ? -ExpM1(p) : Math.Exp(p)) : R_D_Cval(p, lower_tail));
    }
    
    private static double R_D_Lval(double p, bool lower_tail) 
    {
      return lower_tail ? p : 0.5 - p + 0.5; 
    } 
    
    private static double R_D_Cval(double p, bool lower_tail) 
    { 
      return lower_tail ? 0.5 - p + 0.5 : p;
    }
    private static double ExpM1(double x) 
    {
      if (Math.Abs(x) < 1e-5)
         return x + 0.5 * x * x;
      else
         return Math.Exp(x) - 1.0;
     }
    

    In your case, you want mu=0.0, sigma=1.0, lower_tail=true, log_p=false.

    0 讨论(0)
  • 2021-02-05 08:25

    Look up implementations of the error function. There was one in all the classic Numerical Recipes in ... books.

    0 讨论(0)
  • 2021-02-05 08:30

    Here's some code for the normal distribution written in Python, but it could easily be translated to C# by adding some punctuation. It's just about 15 lines of code.

    0 讨论(0)
  • 2021-02-05 08:32

    if you are using Math.Net then you can just use the InverseCumulativeDistribution function.

    So if you want the Z-value, where 80% of the Standard Normal curve is covered the code would look something like this

    var curve = new MathNet.Numerics.Distributions.Normal();
    var z_value = curve.InverseCumulativeDistribution(0.8);
    Console.WriteLine(z_value);
    

    Ensure that you have installed the MathNet.Numerics NuGet package.

    0 讨论(0)
提交回复
热议问题