any idea how I figure out if it\'s currently night/day or sunrise/dawn based on time and location of the user?
I haven\'t found anything useful that I c
PyEphem can be used to calculate the time to the next sunrise and sunset. Building upon a blog post I found and the documentation of rise-set, your problem can be solved as follows. Lets assume I am your user, and my location is Oldenburg (Oldb), Germany.
import ephem
user = ephem.Observer()
user.lat = '53.143889' # See wikipedia.org/Oldenburg
user.lon = '8.213889' # See wikipedia.org/Oldenburg
user.elevation = 4 # See wikipedia.org/Oldenburg
user.temp = 20 # current air temperature gathered manually
user.pressure = 1019.5 # current air pressure gathered manually
next_sunrise_datetime = user.next_rising(ephem.Sun()).datetime()
next_sunset_datetime = user.next_setting(ephem.Sun()).datetime()
# If it is daytime, we will see a sunset sooner than a sunrise.
it_is_day = next_sunset_datetime < next_sunrise_datetime
print("It's day." if it_is_day else "It's night.")
# If it is nighttime, we will see a sunrise sooner than a sunset.
it_is_night = next_sunrise_datetime < next_sunset_datetime
print("It's night." if it_is_night else "It's day.")
lat
and lon
need to be strings but ephem does not complain if they are floats.This should work with at least Python 2.7 (with pip-2.7 install pyephem
) and Python 3.2 (with pip-3.2 install ephem
).
Make sure to have a network time protocol client running on the system. E.g. on Debian Linux:
$ sudo apt-get install ntp
$ sudo /etc/init.d/ntp start
Make sure to have the correct timezone set on your system. E.g. on Debian Linux:
$ sudo dpkg-reconfigure tzdata
You can do as I did and use this public domain Sun.py module to compute the position of the sun relative to positions on the Earth. It's pretty old, but has worked well for me for many years. I made a few superficial modifications to it to be more up-to-date with Python 2.7, such as making the few classes in it new-style, but for the most part it's unchanged.
Here's one module I created, called sunriseset.py, which shows how to use it to calculate the sunrise and sunset times for a specific location given its geographic coordinates and timezone. The referenced timezone
module is an implementation of the tzinfo abstract base class described in the datetime
module's documentation on tzinfoobjects.
# -*- coding: iso-8859-1 -*-
import datetime
import timezone # concrete tzinfo subclass based on the Python docs
import math
from Sun import Sun
__all__ = ['getsuninfo', 'Place']
class Place(object):
def __init__(self, name, coords, tz=timezone.Pacific):
self.name = name # string
self.coords = coords # tuple (E/W long, N/S lat)
self.tz = tz # tzinfo constant
def _hoursmins(hours):
"""Convert floating point decimal time in hours to integer hrs,mins"""
frac,h = math.modf(hours)
m = round(frac*60, 0)
if m == 60: # rounded up to next hour
h += 1; m = 0
return int(h),int(m)
def _ymd(date):
"""Return y,m,d from datetime object as tuple"""
return date.timetuple()[:3]
def getsuninfo(location, date=None):
"""Return local datetime of sunrise, sunset, and length of day in hrs,mins)"""
if date == None:
querydate = datetime.date.today()
else: # date given should be datetime instance
querydate = date
args = _ymd(querydate) + location.coords
utcrise, utcset = Sun().sunRiseSet(*args)
daylength = Sun().dayLength(*args)
hrs,mins = _hoursmins(daylength)
risehour, risemin = _hoursmins(utcrise)
sethour, setmin = _hoursmins(utcset)
# convert times to timedelta values (ie from midnight utc of the date)
midnight = datetime.datetime(tzinfo=timezone.utc, *_ymd(querydate))
deltarise = datetime.timedelta(hours=risehour, minutes=risemin)
utcdatetimerise = midnight+deltarise
deltaset = datetime.timedelta(hours=sethour, minutes=setmin)
utcdatetimeset = midnight+deltaset
# convert results from UTC time to local time of location
localrise = utcdatetimerise.astimezone(location.tz)
localset = utcdatetimeset.astimezone(location.tz)
return localrise, localset, hrs, mins
if __name__ == "__main__":
import datetime, timezone
def unittest(location, testdate):
risetime, settime, hrs, mins = getsuninfo(location, testdate)
print "Location:", location.name
print "Date:", testdate.strftime("%a %x")
print risetime.strftime("Sunrise %I:%M %p"), settime.strftime("- Sunset %I:%M %p (%Z)")
print "daylight: %d:%02d" % (hrs,mins)
print
place = Place("My House", (-121.990278, 47.204444), timezone.Pacific)
# test dates just before and after DST transitions
print "pre 2007"
print "========="
unittest(place, datetime.date(2006, 4, 1))
unittest(place, datetime.date(2006, 4, 2))
unittest(place, datetime.date(2006, 10, 28))
unittest(place, datetime.date(2006, 10, 29))
print "2007"
print "========="
unittest(place, datetime.date(2007, 3, 10))
unittest(place, datetime.date(2007, 3, 11))
unittest(place, datetime.date(2007, 11, 3))
unittest(place, datetime.date(2007, 11, 4))
A concise description of an algorithm to calculate the sunrise and sunset is provided by the United States Naval Observatory, available here:
http://edwilliams.org/sunrise_sunset_algorithm.htm
In addition to providing the date and location, you also need to select a Zenith angle (at which the sun will be considered to have "risen" or "set") - the page linked has several options.
Update
Because the linked page is no longer available, I am quoting its text below. Note that the formulae included are in a pseudo-code-like form, rather than JavaScript.
Source:
Almanac for Computers, 1990
published by Nautical Almanac Office
United States Naval Observatory
Washington, DC 20392
Inputs:
day, month, year: date of sunrise/sunset
latitude, longitude: location for sunrise/sunset
zenith: Sun's zenith for sunrise/sunset
offical = 90 degrees 50'
civil = 96 degrees
nautical = 102 degrees
astronomical = 108 degrees
NOTE: longitude is positive for East and negative for West
NOTE: the algorithm assumes the use of a calculator with the
trig functions in "degree" (rather than "radian") mode. Most
programming languages assume radian arguments, requiring back
and forth convertions. The factor is 180/pi. So, for instance,
the equation RA = atan(0.91764 * tan(L)) would be coded as RA
= (180/pi)*atan(0.91764 * tan((pi/180)*L)) to give a degree
answer with a degree input for L.
1. first calculate the day of the year
N1 = floor(275 * month / 9)
N2 = floor((month + 9) / 12)
N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3))
N = N1 - (N2 * N3) + day - 30
2. convert the longitude to hour value and calculate an approximate time
lngHour = longitude / 15
if rising time is desired:
t = N + ((6 - lngHour) / 24)
if setting time is desired:
t = N + ((18 - lngHour) / 24)
3. calculate the Sun's mean anomaly
M = (0.9856 * t) - 3.289
4. calculate the Sun's true longitude
L = M + (1.916 * sin(M)) + (0.020 * sin(2 * M)) + 282.634
NOTE: L potentially needs to be adjusted into the range [0,360) by adding/subtracting 360
5a. calculate the Sun's right ascension
RA = atan(0.91764 * tan(L))
NOTE: RA potentially needs to be adjusted into the range [0,360) by adding/subtracting 360
5b. right ascension value needs to be in the same quadrant as L
Lquadrant = (floor( L/90)) * 90
RAquadrant = (floor(RA/90)) * 90
RA = RA + (Lquadrant - RAquadrant)
5c. right ascension value needs to be converted into hours
RA = RA / 15
6. calculate the Sun's declination
sinDec = 0.39782 * sin(L)
cosDec = cos(asin(sinDec))
7a. calculate the Sun's local hour angle
cosH = (cos(zenith) - (sinDec * sin(latitude))) / (cosDec * cos(latitude))
if (cosH > 1)
the sun never rises on this location (on the specified date)
if (cosH < -1)
the sun never sets on this location (on the specified date)
7b. finish calculating H and convert into hours
if if rising time is desired:
H = 360 - acos(cosH)
if setting time is desired:
H = acos(cosH)
H = H / 15
8. calculate local mean time of rising/setting
T = H + RA - (0.06571 * t) - 6.622
9. adjust back to UTC
UT = T - lngHour
NOTE: UT potentially needs to be adjusted into the range [0,24) by adding/subtracting 24
10. convert UT value to local time zone of latitude/longitude
localT = UT + localOffset