How do I get what the digits of a number are in C++ without converting it to strings or character arrays?
Years ago, in response to the above questions I would write the following code:
int i2a_old(int n, char *s)
{
char d,*e=s;//init begin pointer
do{*e++='0'+n%10;}while(n/=10);//extract digits
*e--=0;//set end of str_number
int digits=e-s;//calc number of digits
while(s<e)d=*s,*s++=*e,*e--=d;//reverse digits of the number
return digits;//return number of digits
}
I think that the function printf(...) does something like that.
Now I will write this:
int i2a_new(int n, char *s)
{
int digits=n<100000?n<100?n<10?1:2:n<1000?3:n<10000?4:5:n<10000000?n<1000000?6:7:n<100000000?8:n<1000000000?9:10;
char *e=&s[digits];//init end pointer
*e=0;//set end of str_number
do{*--e='0'+n%10;}while(n/=10);//extract digits
return digits;//return number of digits
}
Advantages:
lookup table indipendent;
C,C++,Java,JavaScript,PHP compatible;
get number of digits, min comparisons: 3
;
get number of digits, max comparisons: 4
;
fast code;
a comparison is very simple and fast: cmp reg, immediate_data
--> 1 CPU clock.
What about floor(log(number))+1
?
With n digits and using base b you can express any number up to pow(b,n)-1
. So to get the number of digits of a number x in base b you can use the inverse function of exponentiation: base-b logarithm. To deal with non-integer results you can use the floor()+1
trick.
PS: This works for integers, not for numbers with decimals (in that case you should know what's the precision of the type you are using).
First digit (least significant) = num % 10, second digit = floor(num/10)%10, 3rd digit = floor(num/100)%10. etc
I have seen many answers, but they all forgot to use do {...} while()
loop, which is actually the canonical way to solve this problem and handle 0
properly.
My solution is based on this one by Naveen.
int n = 0;
std::cin>>n;
std::deque<int> digits;
n = abs(n);
do {
digits.push_front( n % 10);
n /= 10;
} while (n>0);
simple recursion:
#include <iostream>
// 0-based index pos
int getDigit (const long number, int pos)
{
return (pos == 0) ? number % 10 : getDigit (number/10, --pos);
}
int main (void) {
std::cout << getDigit (1234567, 4) << "\n";
}
Those solutions are all recursive or iterative. Might a more direct approach be a little more efficient?
Left-to-right:
int getDigit(int from, int index)
{
return (from / (int)pow(10, floor(log10(from)) - index)) % 10;
}
Right-to-left:
int getDigit(int from, int index)
{
return (from / pow(10, index)) % 10;
}