disable index pandas data frame

前端 未结 5 1467
既然无缘
既然无缘 2021-02-05 05:04

How can I drop or disable the indices in a pandas Data Frame?

I am learning the pandas from the book \"python for data analysis\" and I already know I can use the datafr

相关标签:
5条回答
  • 2021-02-05 05:27

    df.values gives you the raw NumPy ndarray without the indexes.

    >>> df
       x   y
    0  4  GE
    1  1  RE
    2  1  AE
    3  4  CD
    >>> df.values
    array([[4, 'GE'],
           [1, 'RE'],
           [1, 'AE'],
           [4, 'CD']], dtype=object)
    

    You cannot have a DataFrame without the indexes, they are the whole point of the DataFrame :)

    But just to be clear, this operation is not inplace:

    >>> df.values is df.values
    False
    

    DataFrame keeps the data in two dimensional arrays grouped by type, so when you want the whole data frame it will have to find the LCD of all the dtypes and construct a 2D array of that type.

    To instantiate a new data frame with the values from the old one, just pass the old DataFrame to the new ones constructor and no data will be copied the same data structures will be reused:

    >>> df1 = pd.DataFrame([[1, 2], [3, 4]])
    >>> df2 = pd.DataFrame(df1)
    >>> df2.iloc[0,0] = 42
    >>> df1
        0  1
    0  42  2
    1   3  4
    

    But you can explicitly specify the copy parameter:

    >>> df1 = pd.DataFrame([[1, 2], [3, 4]])
    >>> df2 = pd.DataFrame(df1, copy=True)
    >>> df2.iloc[0,0] = 42
    >>> df1
       0  1
    0  1  2
    1  3  4
    
    0 讨论(0)
  • 2021-02-05 05:28

    I have a function that may help some. I combine csv files with a header in the following way in python:

        def combine_csvs(filedict, combined_file):
            files = filedict['files']
            df = pd.read_csv(files[0])
            for file in files[1:]:
                df = pd.concat([df, pd.read_csv(file)])
            df.to_csv(combined_file, index=False)
            return df
    

    It can take as many files as you need. Call this as:

        combine_csvs(dict(files=["file1.csv","file2.csv", "file3.csv"]), 'output.csv')
    

    Or if you are reading the dataframe in python as:

        df = combine_csvs(dict(files=["file1.csv","file2.csv"]), 'output.csv')
    

    The combine_csvs fucntion does not save the indices. If you need the indices use 'index=True' instead.

    0 讨论(0)
  • 2021-02-05 05:29

    I was having a similar issue trying to take a DataFrame from an index-less CSV and write it back to another file.

    I came up with the following:

    import pandas as pd
    import os
    
    def csv_to_df(csv_filepath):
        # the read_table method allows you to set an index_col to False, from_csv does not
        dataframe_conversion = pd.io.parsers.read_table(csv_filepath, sep='\t', header=0, index_col=False)
        return dataframe_conversion
    
    def df_to_excel(df):
        from pandas import ExcelWriter
        # Get the path and filename w/out extension
        file_name = 'foo.xlsx'
        # Add the above w/ .xslx
        file_path = os.path.join('some/directory/', file_name)
        # Write the file out
        writer = ExcelWriter(file_path)
        # index_label + index are set to `False` so that all the data starts on row
        # index 1 and column labels (called headers by pandas) are all on row index 0.
        df.to_excel(writer, 'Attributions Detail', index_label=False, index=False, header=True)
        writer.save()
    
    0 讨论(0)
  • 2021-02-05 05:33

    Additionally, if you are using the df.to_excel function of a pd.ExcelWriter, which is where it is written to an Excel worksheet, you can specify index=False in your parameters there.

    create the Excel writer:

    writer = pd.ExcelWriter(type_box + '-rules_output-' + date_string + '.xlsx',engine='xlsxwriter')  
    

    We have a list called lines:

    # create a dataframe called 'df'
    df = pd.DataFrame([sub.split(",") for sub in lines], columns=["Rule", "Device", "Status"]))
    
    #convert df to Excel worksheet
    df.to_excel(writer, sheet_name='all_status',**index=False**)
    writer.save()
    
    0 讨论(0)
  • 2021-02-05 05:34
    d.index = range(len(d))
    

    does a simple in-place index reset - i.e. it removes all of the existing indices, and adds a basic integer one, which is the most basic index type a pandas Dataframe can have.

    0 讨论(0)
提交回复
热议问题