I have a NumPy array a
like the following:
>>> str(a)
\'[ nan nan nan 1.44955726 1.44628034 1.44409573\\n 1.4408
I want to replace each NaN with the closest non-NaN value... there will be no NaN's in the middle of the numbers
The following will do it:
ind = np.where(~np.isnan(a))[0]
first, last = ind[0], ind[-1]
a[:first] = a[first]
a[last + 1:] = a[last]
This is a straight numpy
solution requiring no Python loops, no recursion, no list comprehensions etc.
I came across the problem and had to find a custom solution for scattered NaNs. The function below replaces any NaN by the first number occurrence to the right, if none exists, it replaces it by the first number occurrence to the left. Further manipulation can be done to replace it with the mean of boundary occurrences.
import numpy as np
Data = np.array([np.nan,1.3,np.nan,1.4,np.nan,np.nan])
nansIndx = np.where(np.isnan(Data))[0]
isanIndx = np.where(~np.isnan(Data))[0]
for nan in nansIndx:
replacementCandidates = np.where(isanIndx>nan)[0]
if replacementCandidates.size != 0:
replacement = Data[isanIndx[replacementCandidates[0]]]
else:
replacement = Data[isanIndx[np.where(isanIndx<nan)[0][-1]]]
Data[nan] = replacement
Result is:
>>> Data
array([ 1.3, 1.3, 1.4, 1.4, 1.4, 1.4])
Here is a solution using simple python iterators. They are actually more efficient here than numpy.where
, especially with big arrays! See comparison of similar code here.
import numpy as np
a = np.array([np.NAN, np.NAN, np.NAN, 1.44955726, 1.44628034, 1.44409573, 1.4408188, 1.43657094, 1.43171624, 1.42649744, 1.42200684, 1.42117704, 1.42040255, 1.41922908, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN])
mask = np.isfinite(a)
# get first value in list
for i in range(len(mask)):
if mask[i]:
first = i
break
# get last vaue in list
for i in range(len(mask)-1, -1, -1):
if mask[i]:
last = i
break
# fill NaN with near known value on the edges
a = np.copy(a)
a[:first] = a[first]
a[last + 1:] = a[last]
print(a)
Output:
[1.44955726 1.44955726 1.44955726 1.44955726 1.44628034 1.44409573
1.4408188 1.43657094 1.43171624 1.42649744 1.42200684 1.42117704
1.42040255 1.41922908 1.41922908 1.41922908 1.41922908 1.41922908
1.41922908 1.41922908]
It replaces only the first and last NaNs like requested here.
I got something like this
i = [i for i in range(len(a)) if not np.isnan(a[i])]
a = [a[i[0]] if x < i[0] else (a[i[-1]] if x > i[-1] else a[x]) for x in range(len(a))]
It's a bit clunky though given it's split up in two lines with nested inline if's in one of them.
As an alternate solution (this will linearly interpolate for arrays NaN
s in the middle, as well):
import numpy as np
# Generate data...
data = np.random.random(10)
data[:2] = np.nan
data[-1] = np.nan
data[4:6] = np.nan
print data
# Fill in NaN's...
mask = np.isnan(data)
data[mask] = np.interp(np.flatnonzero(mask), np.flatnonzero(~mask), data[~mask])
print data
This yields:
[ nan nan 0.31619306 0.25818765 nan nan
0.27410025 0.23347532 0.02418698 nan]
[ 0.31619306 0.31619306 0.31619306 0.25818765 0.26349185 0.26879605
0.27410025 0.23347532 0.02418698 0.02418698]
NaN
s have the interesting property of comparing different from themselves, thus we can quickly find the indexes of the non-nan elements:
idx = np.nonzero(a==a)[0]
it's now easy to replace the nans with the desired value:
for i in range(0, idx[0]):
a[i]=a[idx[0]]
for i in range(idx[-1]+1, a.size)
a[i]=a[idx[-1]]
Finally, we can put this in a function:
import numpy as np
def FixNaNs(arr):
if len(arr.shape)>1:
raise Exception("Only 1D arrays are supported.")
idxs=np.nonzero(arr==arr)[0]
if len(idxs)==0:
return None
ret=arr
for i in range(0, idxs[0]):
ret[i]=ret[idxs[0]]
for i in range(idxs[-1]+1, ret.size):
ret[i]=ret[idxs[-1]]
return ret
edit
Ouch, coming from C++ I always forget about list ranges... @aix's solution is way more elegant and efficient than my C++ish loops, use that instead of mine.