OpenCV Adaptive Threshold OCR

前端 未结 3 528
北荒
北荒 2020-11-27 03:40

I am using OpenCV to prepare images for OCR from an iPhone camera, and I have been having trouble getting the results I need for an accurate OCR scan. Here is the code I am

相关标签:
3条回答
  • 2020-11-27 04:28

    JAVA CODE: A long time has passed since this question was made, but I've rewritten this code from C++ to Java in case someone will need it (I needed to use it for developing an app on android studio).

    public Bitmap Thresholding(Bitmap bitmap)
    {
        Mat imgMat = new Mat();
        Utils.bitmapToMat(bitmap, imgMat);
        imgMat.convertTo(imgMat, CvType.CV_32FC1, 1.0 / 255.0);
    
        Mat res = CalcBlockMeanVariance(imgMat, 21);
        Core.subtract(new MatOfDouble(1.0), res, res);
        Imgproc.cvtColor( imgMat, imgMat, Imgproc.COLOR_BGRA2BGR);
        Core.add(imgMat, res, res);
    
        Imgproc.threshold(res, res, 0.85, 1, Imgproc.THRESH_BINARY);
    
        res.convertTo(res, CvType.CV_8UC1, 255.0);
        Utils.matToBitmap(res, bitmap);
    
        return bitmap;
    }
    
    public Mat CalcBlockMeanVariance (Mat Img, int blockSide)
    {
        Mat I = new Mat();
        Mat ResMat;
        Mat inpaintmask = new Mat();
        Mat patch;
        Mat smallImg = new Mat();
        MatOfDouble mean = new MatOfDouble();
        MatOfDouble stddev = new MatOfDouble();
    
        Img.convertTo(I, CvType.CV_32FC1);
        ResMat = Mat.zeros(Img.rows() / blockSide, Img.cols() / blockSide, CvType.CV_32FC1);
    
        for (int i = 0; i < Img.rows() - blockSide; i += blockSide)
        {
            for (int j = 0; j < Img.cols() - blockSide; j += blockSide)
            {
                patch = new Mat(I,new Rect(j,i, blockSide, blockSide));
                Core.meanStdDev(patch, mean, stddev);
    
                if (stddev.get(0,0)[0] > 0.01)
                    ResMat.put(i / blockSide, j / blockSide, mean.get(0,0)[0]);
                else
                    ResMat.put(i / blockSide, j / blockSide, 0);
            }
        }
    
        Imgproc.resize(I, smallImg, ResMat.size());
        Imgproc.threshold(ResMat, inpaintmask, 0.02, 1.0, Imgproc.THRESH_BINARY);
    
        Mat inpainted = new Mat();
        Imgproc.cvtColor(smallImg, smallImg, Imgproc.COLOR_RGBA2BGR);
        smallImg.convertTo(smallImg, CvType.CV_8UC1, 255.0);
    
        inpaintmask.convertTo(inpaintmask, CvType.CV_8UC1);
        Photo.inpaint(smallImg, inpaintmask, inpainted, 5, Photo.INPAINT_TELEA);
    
        Imgproc.resize(inpainted, ResMat, Img.size());
        ResMat.convertTo(ResMat, CvType.CV_32FC1, 1.0 / 255.0);
    
        return ResMat;
    }
    
    0 讨论(0)
  • 2020-11-27 04:31

    As the light is almost in uniform, and the foreground is easily distinguished with the background. So I think just directly threshold (using OTSU) is ok for OCR. (Almost the same with @Andrey's answer in text regions).


    OpenCV 3 Code in Python:

    #!/usr/bin/python3
    # 2018.01.17 16:41:20 CST
    import cv2
    import numpy as np
    
    img = cv2.imread("ocr.jpg")
    gray = cv2.cvtColor(median, cv2.COLOR_BGR2GRAY)
    th, threshed = cv2.threshold(gray,127,255, cv2.THRESH_BINARY|cv2.THRESH_OTSU)
    print(th)
    
    cv2.imwrite("res.png", threshed)
    
    0 讨论(0)
  • 2020-11-27 04:35

    Here is my result: enter image description here

    Here is the code:

    #include <iostream>
    #include <vector>
    #include <stdio.h>
    #include <stdarg.h>
    #include "opencv2/opencv.hpp"
    #include "fstream"
    #include "iostream"
    using namespace std;
    using namespace cv;
    
    //-----------------------------------------------------------------------------------------------------
    // 
    //-----------------------------------------------------------------------------------------------------
    void CalcBlockMeanVariance(Mat& Img,Mat& Res,float blockSide=21) // blockSide - the parameter (set greater for larger font on image)
    {
        Mat I;
        Img.convertTo(I,CV_32FC1);
        Res=Mat::zeros(Img.rows/blockSide,Img.cols/blockSide,CV_32FC1);
        Mat inpaintmask;
        Mat patch;
        Mat smallImg;
        Scalar m,s;
    
        for(int i=0;i<Img.rows-blockSide;i+=blockSide)
        {       
            for (int j=0;j<Img.cols-blockSide;j+=blockSide)
            {
                patch=I(Range(i,i+blockSide+1),Range(j,j+blockSide+1));
                cv::meanStdDev(patch,m,s);
                if(s[0]>0.01) // Thresholding parameter (set smaller for lower contrast image)
                {
                    Res.at<float>(i/blockSide,j/blockSide)=m[0];
                }else
                {
                    Res.at<float>(i/blockSide,j/blockSide)=0;
                }           
            }
        }
    
        cv::resize(I,smallImg,Res.size());
    
        cv::threshold(Res,inpaintmask,0.02,1.0,cv::THRESH_BINARY);
    
        Mat inpainted;
        smallImg.convertTo(smallImg,CV_8UC1,255);
    
        inpaintmask.convertTo(inpaintmask,CV_8UC1);
        inpaint(smallImg, inpaintmask, inpainted, 5, INPAINT_TELEA);
    
        cv::resize(inpainted,Res,Img.size());
        Res.convertTo(Res,CV_32FC1,1.0/255.0);
    
    }
    //-----------------------------------------------------------------------------------------------------
    // 
    //-----------------------------------------------------------------------------------------------------
    int main( int argc, char** argv )
    {
        namedWindow("Img");
        namedWindow("Edges");
        //Mat Img=imread("D:\\ImagesForTest\\BookPage.JPG",0);
        Mat Img=imread("Test2.JPG",0);
        Mat res;
        Img.convertTo(Img,CV_32FC1,1.0/255.0);
        CalcBlockMeanVariance(Img,res); 
        res=1.0-res;
        res=Img+res;
        imshow("Img",Img);
        cv::threshold(res,res,0.85,1,cv::THRESH_BINARY);
        cv::resize(res,res,cv::Size(res.cols/2,res.rows/2));
        imwrite("result.jpg",res*255);
        imshow("Edges",res);
        waitKey(0);
    
        return 0;
    }
    

    And Python port:

    import cv2 as cv
    import numpy as np 
    
    #-----------------------------------------------------------------------------------------------------
    # 
    #-----------------------------------------------------------------------------------------------------
    def CalcBlockMeanVariance(Img,blockSide=21): # blockSide - the parameter (set greater for larger font on image)            
        I=np.float32(Img)/255.0
        Res=np.zeros( shape=(int(Img.shape[0]/blockSide),int(Img.shape[1]/blockSide)),dtype=np.float)
    
        for i in range(0,Img.shape[0]-blockSide,blockSide):           
            for j in range(0,Img.shape[1]-blockSide,blockSide):        
                patch=I[i:i+blockSide+1,j:j+blockSide+1]
                m,s=cv.meanStdDev(patch)
                if(s[0]>0.001): # Thresholding parameter (set smaller for lower contrast image)
                    Res[int(i/blockSide),int(j/blockSide)]=m[0]
                else:            
                    Res[int(i/blockSide),int(j/blockSide)]=0
    
        smallImg=cv.resize(I,(Res.shape[1],Res.shape[0] ) )    
        _,inpaintmask=cv.threshold(Res,0.02,1.0,cv.THRESH_BINARY);    
        smallImg=np.uint8(smallImg*255)    
    
        inpaintmask=np.uint8(inpaintmask)
        inpainted=cv.inpaint(smallImg, inpaintmask, 5, cv.INPAINT_TELEA)    
        Res=cv.resize(inpainted,(Img.shape[1],Img.shape[0] ) )
        Res=np.float32(Res)/255    
        return Res
    
    #-----------------------------------------------------------------------------------------------------
    # 
    #-----------------------------------------------------------------------------------------------------
    
    cv.namedWindow("Img")
    cv.namedWindow("Edges")
    Img=cv.imread("F:\\ImagesForTest\\BookPage.JPG",0)
    res=CalcBlockMeanVariance(Img)
    res=1.0-res
    Img=np.float32(Img)/255
    res=Img+res
    cv.imshow("Img",Img);
    _,res=cv.threshold(res,0.85,1,cv.THRESH_BINARY);
    res=cv.resize(res,( int(res.shape[1]/2),int(res.shape[0]/2) ))
    cv.imwrite("result.jpg",res*255);
    cv.imshow("Edges",res)
    cv.waitKey(0)
    
    0 讨论(0)
提交回复
热议问题