How to multiply a scalar throughout a specific column within a NumPy array?

后端 未结 3 1465
死守一世寂寞
死守一世寂寞 2021-02-05 02:38

I need to do some analysis on a large dataset from a hydrolgeology field work. I am using NumPy. I want to know how I can:

  1. multiply e.g. the 2nd column of my ar

相关标签:
3条回答
  • 2021-02-05 03:19

    To multiply a constant with a specific column or row:

    import numpy as np;
    X=np.ones(shape=(10,10),dtype=np.float64);
    X;
    
    ### this is our default matrix
    array([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]])
    
    
    
     ## now say we want to multiple it with 10
    
     X=X*10;
    
    array([[10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.]])
    
    ### Now if, we want to mulitply 3,5, 7 column with 5
    
    X[:,[3,5,7]]=X[:,[3,5,7]]*5
    
     array([[10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
       [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
       [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
       [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
       [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
       [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
       [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
       [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
       [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
       [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.]])
    

    Similarly, we can do it for any columns. Hope it clarifies.

    0 讨论(0)
  • 2021-02-05 03:30

    Sure:

    import numpy as np
    # Let a be some 2d array; here we just use dummy data 
    # to illustrate the method
    a = np.ones((10,5))
    # Multiply just the 2nd column by 5.2 in-place
    a[:,1] *= 5.2
    
    # Now get the cumulative sum of just that column
    csum = np.cumsum(a[:,1])
    

    If you don't want to do this in-place you would need a slightly different strategy:

    b = 5.2*a[:,1]
    csum = np.cumsum(b)
    
    0 讨论(0)
  • 2021-02-05 03:34
     you can do this in two simple steps using NumPy:
    
    >>> # multiply column 2 of the 2D array, A, by 5.2
    >>> A[:,1] *= 5.2
    
    >>> # assuming by 'cumulative sum' you meant the 'reduced' sum:
    >>> A[:,1].sum()
    
    >>> # if in fact you want the cumulative sum (ie, returns a new column)
    >>> # then do this for the second step instead:
    >>> NP.cumsum(A[:,1])
    

    with some mocked data:

    >>> A = NP.random.rand(8, 5)
    >>> A
      array([[ 0.893,  0.824,  0.438,  0.284,  0.892],
             [ 0.534,  0.11 ,  0.409,  0.555,  0.96 ],
             [ 0.671,  0.817,  0.636,  0.522,  0.867],
             [ 0.752,  0.688,  0.142,  0.793,  0.716],
             [ 0.276,  0.818,  0.904,  0.767,  0.443],
             [ 0.57 ,  0.159,  0.144,  0.439,  0.747],
             [ 0.705,  0.793,  0.575,  0.507,  0.956],
             [ 0.322,  0.713,  0.963,  0.037,  0.509]])
    
    >>> A[:,1] *= 5.2
    
    >>> A
      array([[ 0.893,  4.287,  0.438,  0.284,  0.892],
             [ 0.534,  0.571,  0.409,  0.555,  0.96 ],
             [ 0.671,  4.25 ,  0.636,  0.522,  0.867],
             [ 0.752,  3.576,  0.142,  0.793,  0.716],
             [ 0.276,  4.255,  0.904,  0.767,  0.443],
             [ 0.57 ,  0.827,  0.144,  0.439,  0.747],
             [ 0.705,  4.122,  0.575,  0.507,  0.956],
             [ 0.322,  3.71 ,  0.963,  0.037,  0.509]])
    
    >>> A[:,1].sum()
      25.596156138451427
    

    just a few simple rules are required to grok element selection (indexing) in NumPy:

    • NumPy, like Python, is 0-based, so eg, the "1" below refers to the second column

    • commas separate the dimensions inside the brackets, so [rows, columns], eg, A[2,3] means the item ("cell") at row three, column four

    • a colon means all of the elements along that dimension, eg, A[:,1] creates a view of A's column 2; A[3,:] refers to the fourth row

    0 讨论(0)
提交回复
热议问题