Can someone explain how to check if one rotated rectangle intersect other rectangle?
/// Checks if the two polygons are intersecting.
bool IsPolygonsIntersecting(Polygon a, Polygon b)
{
foreach (var polygon in new[] { a, b })
{
for (int i1 = 0; i1 < polygon.Points.Count; i1++)
{
int i2 = (i1 + 1) % polygon.Points.Count;
var p1 = polygon.Points[i1];
var p2 = polygon.Points[i2];
var normal = new Point(p2.Y - p1.Y, p1.X - p2.X);
double? minA = null, maxA = null;
foreach (var p in a.Points)
{
var projected = normal.X * p.X + normal.Y * p.Y;
if (minA == null || projected < minA)
minA = projected;
if (maxA == null || projected > maxA)
maxA = projected;
}
double? minB = null, maxB = null;
foreach (var p in b.Points)
{
var projected = normal.X * p.X + normal.Y * p.Y;
if (minB == null || projected < minB)
minB = projected;
if (maxB == null || projected > maxB)
maxB = projected;
}
if (maxA < minB || maxB < minA)
return false;
}
}
return true;
}
For more information, see this article: 2D Polygon Collision Detection - Code Project
NB: The algorithm only works for convex polygons, specified in either clockwise, or counterclockwise order.
Maybe it will help someone. The same algorithm in PHP:
function isPolygonsIntersecting($a, $b) {
$polygons = array($a, $b);
for ($i = 0; $i < count($polygons); $i++) {
$polygon = $polygons[$i];
for ($i1 = 0; $i1 < count($polygon); $i1++) {
$i2 = ($i1 + 1) % count($polygon);
$p1 = $polygon[$i1];
$p2 = $polygon[$i2];
$normal = array(
"x" => $p2["y"] - $p1["y"],
"y" => $p1["x"] - $p2["x"]
);
$minA = NULL; $maxA = NULL;
for ($j = 0; $j < count($a); $j++) {
$projected = $normal["x"] * $a[$j]["x"] + $normal["y"] * $a[$j]["y"];
if (!isset($minA) || $projected < $minA) {
$minA = $projected;
}
if (!isset($maxA) || $projected > $maxA) {
$maxA = $projected;
}
}
$minB = NULL; $maxB = NULL;
for ($j = 0; $j < count($b); $j++) {
$projected = $normal["x"] * $b[$j]["x"] + $normal["y"] * $b[$j]["y"];
if (!isset($minB) || $projected < $minB) {
$minB = $projected;
}
if (!isset($maxB) || $projected > $maxB) {
$maxB = $projected;
}
}
if ($maxA < $minB || $maxB < $minA) {
return false;
}
}
}
return true;
}
Check out the method designed by Oren Becker to detect intersection of rotated rectangles with form:
struct _Vector2D
{
float x, y;
};
// C:center; S: size (w,h); ang: in radians,
// rotate the plane by [-ang] to make the second rectangle axis in C aligned (vertical)
struct _RotRect
{
_Vector2D C;
_Vector2D S;
float ang;
};
And calling the following function will return whether two rotated rectangles intersect or not:
// Rotated Rectangles Collision Detection, Oren Becker, 2001
bool check_two_rotated_rects_intersect(_RotRect * rr1, _RotRect * rr2)
{
_Vector2D A, B, // vertices of the rotated rr2
C, // center of rr2
BL, TR; // vertices of rr2 (bottom-left, top-right)
float ang = rr1->ang - rr2->ang, // orientation of rotated rr1
cosa = cos(ang), // precalculated trigonometic -
sina = sin(ang); // - values for repeated use
float t, x, a; // temporary variables for various uses
float dx; // deltaX for linear equations
float ext1, ext2; // min/max vertical values
// move rr2 to make rr1 cannonic
C = rr2->C;
SubVectors2D(&C, &rr1->C);
// rotate rr2 clockwise by rr2->ang to make rr2 axis-aligned
RotateVector2DClockwise(&C, rr2->ang);
// calculate vertices of (moved and axis-aligned := 'ma') rr2
BL = TR = C;
/*SubVectors2D(&BL, &rr2->S);
AddVectors2D(&TR, &rr2->S);*/
//-----------------------------------
BL.x -= rr2->S.x/2; BL.y -= rr2->S.y/2;
TR.x += rr2->S.x/2; TR.y += rr2->S.y/2;
// calculate vertices of (rotated := 'r') rr1
A.x = -(rr1->S.y/2)*sina; B.x = A.x; t = (rr1->S.x/2)*cosa; A.x += t; B.x -= t;
A.y = (rr1->S.y/2)*cosa; B.y = A.y; t = (rr1->S.x/2)*sina; A.y += t; B.y -= t;
//---------------------------------------
//// calculate vertices of (rotated := 'r') rr1
//A.x = -rr1->S.y*sina; B.x = A.x; t = rr1->S.x*cosa; A.x += t; B.x -= t;
//A.y = rr1->S.y*cosa; B.y = A.y; t = rr1->S.x*sina; A.y += t; B.y -= t;
t = sina*cosa;
// verify that A is vertical min/max, B is horizontal min/max
if (t < 0)
{
t = A.x; A.x = B.x; B.x = t;
t = A.y; A.y = B.y; B.y = t;
}
// verify that B is horizontal minimum (leftest-vertex)
if (sina < 0) { B.x = -B.x; B.y = -B.y; }
// if rr2(ma) isn't in the horizontal range of
// colliding with rr1(r), collision is impossible
if (B.x > TR.x || B.x > -BL.x) return 0;
// if rr1(r) is axis-aligned, vertical min/max are easy to get
if (t == 0) {ext1 = A.y; ext2 = -ext1; }
// else, find vertical min/max in the range [BL.x, TR.x]
else
{
x = BL.x-A.x; a = TR.x-A.x;
ext1 = A.y;
// if the first vertical min/max isn't in (BL.x, TR.x), then
// find the vertical min/max on BL.x or on TR.x
if (a*x > 0)
{
dx = A.x;
if (x < 0) { dx -= B.x; ext1 -= B.y; x = a; }
else { dx += B.x; ext1 += B.y; }
ext1 *= x; ext1 /= dx; ext1 += A.y;
}
x = BL.x+A.x; a = TR.x+A.x;
ext2 = -A.y;
// if the second vertical min/max isn't in (BL.x, TR.x), then
// find the local vertical min/max on BL.x or on TR.x
if (a*x > 0)
{
dx = -A.x;
if (x < 0) { dx -= B.x; ext2 -= B.y; x = a; }
else { dx += B.x; ext2 += B.y; }
ext2 *= x; ext2 /= dx; ext2 -= A.y;
}
}
// check whether rr2(ma) is in the vertical range of colliding with rr1(r)
// (for the horizontal range of rr2)
return !((ext1 < BL.y && ext2 < BL.y) ||
(ext1 > TR.y && ext2 > TR.y));
}
inline void AddVectors2D(_Vector2D * v1, _Vector2D * v2)
{
v1->x += v2->x; v1->y += v2->y;
}
inline void SubVectors2D(_Vector2D * v1, _Vector2D * v2)
{
v1->x -= v2->x; v1->y -= v2->y;
}
inline void RotateVector2DClockwise(_Vector2D * v, float ang)
{
float t, cosa = cos(ang), sina = sin(ang);
t = v->x;
v->x = t*cosa + v->y*sina;
v->y = -t*sina + v->y*cosa;
}
Lua implementation built in love2d framework. Collision detection function works in pure lua anyway
math.inf = 1e309
function love.load()
pol = {{0, 0}, {30, 2}, {8, 30}}
pol2 = {{60, 60}, {90, 61}, {98, 100}, {80, 100}}
end
function love.draw()
for k,v in ipairs(pol) do
love.graphics.line(pol[k][1], pol[k][2], pol[k % #pol + 1][1], pol[k % #pol + 1][2])
end
for k,v in ipairs(pol2) do
love.graphics.line(pol2[k][1], pol2[k][2], pol2[k % #pol2 + 1][1], pol2[k % #pol2 + 1][2])
end
end
function love.update(dt)
pol[1][1] = love.mouse.getX()
pol[1][2] = love.mouse.getY()
pol[2][1] = pol[1][1] + 30
pol[2][2] = pol[1][2] + 2
pol[3][1] = pol[1][1] + 8
pol[3][2] = pol[1][2] + 30
--lazy way to see that's function works
print(doPolygonsIntersect(pol, pol2))
end
-------------------------------------------------------------------------
function doPolygonsIntersect(a,b)
polygons = {a,b}
for i=1, #polygons do
polygon = polygons[i]
for i1=1, #polygon do
i2 = i1 % #polygon + 1
p1 = polygon[i1]
p2 = polygon[i2]
nx,ny = p2[2] - p1[2], p1[1] - p2[1]
minA = math.inf
maxA = -math.inf
for j=1, #a do
projected = nx * a[j][1] + ny * a[j][2]
if projected < minA then minA = projected end
if projected > maxA then maxA = projected end
end
minB = math.inf
maxB = -math.inf
for j=1, #b do
projected = nx * b[j][1] + ny * b[j][2]
if projected < minB then minB = projected end
if projected > maxB then maxB = projected end
end
if maxA < minB or maxB < minA then return false end
end
end
return true
end
In Python:
def do_polygons_intersect(a, b):
"""
* Helper function to determine whether there is an intersection between the two polygons described
* by the lists of vertices. Uses the Separating Axis Theorem
*
* @param a an ndarray of connected points [[x_1, y_1], [x_2, y_2],...] that form a closed polygon
* @param b an ndarray of connected points [[x_1, y_1], [x_2, y_2],...] that form a closed polygon
* @return true if there is any intersection between the 2 polygons, false otherwise
"""
polygons = [a, b];
minA, maxA, projected, i, i1, j, minB, maxB = None, None, None, None, None, None, None, None
for i in range(len(polygons)):
# for each polygon, look at each edge of the polygon, and determine if it separates
# the two shapes
polygon = polygons[i];
for i1 in range(len(polygon)):
# grab 2 vertices to create an edge
i2 = (i1 + 1) % len(polygon);
p1 = polygon[i1];
p2 = polygon[i2];
# find the line perpendicular to this edge
normal = { 'x': p2[1] - p1[1], 'y': p1[0] - p2[0] };
minA, maxA = None, None
# for each vertex in the first shape, project it onto the line perpendicular to the edge
# and keep track of the min and max of these values
for j in range(len(a)):
projected = normal['x'] * a[j][0] + normal['y'] * a[j][1];
if (minA is None) or (projected < minA):
minA = projected
if (maxA is None) or (projected > maxA):
maxA = projected
# for each vertex in the second shape, project it onto the line perpendicular to the edge
# and keep track of the min and max of these values
minB, maxB = None, None
for j in range(len(b)):
projected = normal['x'] * b[j][0] + normal['y'] * b[j][1]
if (minB is None) or (projected < minB):
minB = projected
if (maxB is None) or (projected > maxB):
maxB = projected
# if there is no overlap between the projects, the edge we are looking at separates the two
# polygons, and we know there is no overlap
if (maxA < minB) or (maxB < minA):
print("polygons don't intersect!")
return False;
return True