Custom metric (hmeasure) for summaryFunction caret classification

前端 未结 1 658
说谎
说谎 2021-02-04 22:33

I am trying to use the hmeasure metric Hand,2009 as my custom metric for training SVMs in caret. As I am relatively new to using R, I tried adapt the twoClassSummary function. A

相关标签:
1条回答
  • 2021-02-04 22:52

    This code works. I m posting a solution in case anyone else wants to use/improve upon this. The problems were caused by incorrect referencing of the Hmeasure object and a typo/comment on the returned value of the function.

    library(caret)
    library(doMC)
    library(hmeasure)
    library(mlbench)
    
    set.seed(825)
    registerDoMC(cores = 4)
    
    data(Sonar)
    table(Sonar$Class) 
    
    inTraining <- createDataPartition(Sonar$Class, p = 0.5, list = FALSE)
    training <- Sonar[inTraining, ]
    testing <- Sonar[-inTraining, ]
    
    hmeasureCaret<-function (data, lev = NULL, model = NULL,...) 
    { 
      # adaptation of twoClassSummary
      require(hmeasure)
      if (!all(levels(data[, "pred"]) == levels(data[, "obs"]))) 
        stop("levels of observed and predicted data do not match")
      hObject <- try(hmeasure::HMeasure(data$obs, data[, lev[1]]),silent=TRUE)
      hmeasH <- if (class(hObject)[1] == "try-error") {
        NA
      } else {hObject$metrics[[1]]  #hObject$metrics[c('H')] returns a dataframe, need to return a vector 
      }
      out<-hmeasH 
      names(out) <- c("Hmeas")
      out 
    }
    #environment(hmeasureCaret) <- asNamespace('caret')
    
    
    ctrl <- trainControl(method = "repeatedcv",number = 10, repeats = 5, summaryFunction = hmeasureCaret,classProbs=TRUE,allowParallel = TRUE,
                         verboseIter=FALSE,returnData=FALSE,savePredictions=FALSE)
    set.seed(123)
    
    svmTune <- train(Class ~ ., data = training,method = "svmRadial",trControl = ctrl,preProc = c("center", "scale"),tuneLength = 15,metric="Hmeas",
                     verbose = FALSE)
    svmTune
    
    predictedProbs <- predict(svmTune, newdata = testing , type = "prob")
    
    true.class<-testing$Class
    
    hmeas.check<- HMeasure(true.class,predictedProbs[,2])
    
    summary(hmeas.check)
    
    0 讨论(0)
提交回复
热议问题