Which decision_function_shape for sklearn.svm.SVC when using OneVsRestClassifier?

前端 未结 2 543
孤城傲影
孤城傲影 2021-02-04 19:31

I am doing multi-label classification where I am trying to predict correct tags to questions:

(X = questions, y = list of tags for each question from X).

I am wo

相关标签:
2条回答
  • 2021-02-04 19:47

    I think the question of which should be used is best left up to a situational. That could easily be a part of your GridSearch. But just intuitively I would feel that as far as differences go you are going to be doing the same thing. Here is my reasoning:

    OneVsRestClassifier is designed to model each class against all of the other classes independently, and create a classifier for each situation. The way I understand this process is that OneVsRestClassifier grabs a class, and creates a binary label for whether a point is or isn't that class. Then this labelling gets fed into whatever estimator you have chosen to use. I believe the confusion comes in in that SVC also allows you to make this same choice, but in effect with this implementation the choice will not matter because you will always only be feeding two classes into the SVC.

    And here is an example:

    from sklearn.datasets import load_iris
    from sklearn.multiclass import OneVsRestClassifier
    from sklearn.svm import SVC
    
    data = load_iris()
    
    X, y = data.data, data.target
    estim1 = OneVsRestClassifier(SVC(kernel='linear', decision_function_shape='ovo'))
    estim1.fit(X,y)
    
    estim2 = OneVsRestClassifier(SVC(kernel='linear', decision_function_shape='ovr'))
    estim2.fit(X,y)
    
    print(estim1.coef_ == estim2.coef_)
    array([[ True,  True,  True,  True],
           [ True,  True,  True,  True],
           [ True,  True,  True,  True]], dtype=bool)
    

    So you can see the coefficients are all equal for all three estimators built by the two models. Granted this dataset only has 150 samples and 3 classes so it is possible these results could be different for a more complex dataset, but it's a simple proof of concept.

    0 讨论(0)
  • 2021-02-04 19:54

    The shape of the decision functions are different because ovo trains a classifier for each 2-pair class combination whereas ovr trains one classifier for each class fitted against all other classes.

    The best example I could find can be found here on http://scikit-learn.org:

    SVC and NuSVC implement the “one-against-one” approach (Knerr et al., 1990) for multi- class classification. If n_class is the number of classes, then n_class * (n_class - 1) / 2 classifiers are constructed and each one trains data from two classes. To provide a consistent interface with other classifiers, the decision_function_shape option allows to aggregate the results of the “one-against-one” classifiers to a decision function of shape (n_samples, n_classes)

    >>> X = [[0], [1], [2], [3]]
    >>> Y = [0, 1, 2, 3]
    >>> clf = svm.SVC(decision_function_shape='ovo')
    >>> clf.fit(X, Y) 
    SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
        decision_function_shape='ovo', degree=3, gamma='auto', kernel='rbf',
        max_iter=-1, probability=False, random_state=None, shrinking=True,
        tol=0.001, verbose=False)
    >>> dec = clf.decision_function([[1]])
    >>> dec.shape[1] # 4 classes: 4*3/2 = 6
    6
    >>> clf.decision_function_shape = "ovr"
    >>> dec = clf.decision_function([[1]])
    >>> dec.shape[1] # 4 classes
    4
    

    What does this mean in simple terms?

    To understand what n_class * (n_class - 1) / 2 means, generate two-class combinations using itertools.combinations.

    def ovo_classifiers(classes):
        import itertools
        n_class = len(classes)
        n = n_class * (n_class - 1) / 2
        combos = itertools.combinations(classes, 2)
        return (n, list(combos))
    
    >>> ovo_classifiers(['a', 'b', 'c'])
    (3.0, [('a', 'b'), ('a', 'c'), ('b', 'c')])
    >>> ovo_classifiers(['a', 'b', 'c', 'd'])
    (6.0, [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')])
    

    Which estimator should be used for multi-label classification?

    In your situation, you have a question with multiple tags (like here on StackOverflow). If you know your tags (classes) in-advance, I might suggest OneVsRestClassifier(LinearSVC()) but you could try DecisionTreeClassifier or RandomForestClassifier (I think):

    import pandas as pd
    from sklearn.preprocessing import MultiLabelBinarizer
    from sklearn.svm import SVC, LinearSVC
    from sklearn.feature_extraction.text import CountVectorizer
    from sklearn.pipeline import Pipeline
    from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier
    
    df = pd.DataFrame({
      'Tags': [['python', 'pandas'], ['c#', '.net'], ['ruby'],
               ['python'], ['c#'], ['sklearn', 'python']],
      'Questions': ['This is a post about python and pandas is great.',
               'This is a c# post and i hate .net',
               'What is ruby on rails?', 'who else loves python',
               'where to learn c#', 'sklearn is a python package for machine learning']},
                      columns=['Questions', 'Tags'])
    
    X = df['Questions']
    mlb = MultiLabelBinarizer()
    y = mlb.fit_transform(df['Tags'].values)
    
    pipeline = Pipeline([
      ('vect', CountVectorizer(token_pattern='|'.join(mlb.classes_))),
      ('linear_svc', OneVsRestClassifier(LinearSVC()))
      ])
    pipeline.fit(X, y)
    
    final = pd.DataFrame(pipeline.predict(X), index=X, columns=mlb.classes_)
    
    def predict(text):
      return pd.DataFrame(pipeline.predict(text), index=text, columns=mlb.classes_)
    
    test = ['is python better than c#', 'should i learn c#',
            'should i learn sklearn or tensorflow',
            'ruby or c# i am a dinosaur',
            'is .net still relevant']
    print(predict(test))
    

    Output:

                                          .net  c#  pandas  python  ruby  sklearn
    is python better than c#                 0   1       0       1     0        0
    should i learn c#                        0   1       0       0     0        0
    should i learn sklearn or tensorflow     0   0       0       0     0        1
    ruby or c# i am a dinosaur               0   1       0       0     1        0
    is .net still relevant                   1   0       0       0     0        0
    
    0 讨论(0)
提交回复
热议问题