Project Euler #1 in Java

前端 未结 8 1620
旧时难觅i
旧时难觅i 2021-02-04 18:22

I\'m having problems with this code. I don\'t want to look at others, so I\'m wondering what\'s wrong with mine.

If we list all the natural numbers below 10 that are mu

相关标签:
8条回答
  • 2021-02-04 18:35

    just write this simple java code.

     public static void main(String[] args)
    {
    int i,sum=0;
    for ( i = 3; i <1000; i++)
     {
     if ((i % 3 == 0)||(i%5==0) )
     sum=sum+i;
     }
    System.out.print(sum);
    }
    

    You will get the output as 233168

    0 讨论(0)
  • 2021-02-04 18:51

    Some certain conditions occurs where both conditions satisfies for 3 as well as 5 also. like when i=15 satisfies for both 15%3==0 and 15%5==0. so probably your answer is more than expected because you tried for both 3 and 5 separately. by doing this during these certain conditions you add repeated values. Hence it is better to check in single loop. like this -

        for(int i=0 ; i<1000 ; i++)
        {
            if(i%3==0 || i%5==0)
            {
                temp = temp + i;
            }
            System.out.println(temp);
        }
    
    0 讨论(0)
  • 2021-02-04 18:51
    public static int sumOfMultiples(int i, int j, int limit){
        int s = --limit / i, t = limit / j, u = limit / (i * j);
        return (i*(s*(s+1)/2)) + (j*(t*(t+1)/2)) - ((i*j)*(u*(u+1)/2));
    }
    

    Test

    actual = Prob1.sumOfMultiples(3, 5, 1000);
    assertEquals(233168, actual);
    
    0 讨论(0)
  • 2021-02-04 18:56

    You added all multiples of 15 twice. Using your algorithm, run a third loop and test if the number is divisible by 15, then remove it from the total sum.

    0 讨论(0)
  • 2021-02-04 18:57

    Solutions

    1) O(n):

    A small improvement for the other answers (i can start from 3):

    public static void main(String[] args) {
        int sum = 0;
        for (int i = 3; i < 1000; i++) {
            if (i % 3 == 0 || i % 5 == 0) {
                sum += i;
            }
        }
        System.out.println(sum);
    }
    

    For a bigger input number ( Integer.MAX_VALUE instead of 1000 ) it takes:

    • 195 seconds

    2) O(n) = O(n/3) + O(n/5) + O(n/15):

    This is more efficient and uses your initial approach (remove numbers that were taken twice):

    public static void main(String[] args) {
        long sum = 0 ;
        for ( long i = 3 ; i < 1000 ; i+=3 ){
            sum+=i;
        }
        for ( long i = 5 ; i < 1000 ; i+=5 ){
            sum+=i;
        }       
        for ( long i = 15 ; i < 1000 ; i+=15 ){
            sum-=i;
        }
        System.out.println(sum);
    }
    

    In the first case we have about n (1000) values for i, in the second case we have only about n/3 + n/5 + n/15 (600) values for i. The second one is also better because there are fewer comparisons ( no if involved ).

    For a bigger input number ( Integer.MAX_VALUE instead of 1000 ) it takes:

    • 9 seconds

    3) O(1):

    This solution is based on the following observation:

    1 + 2 + ... + n = n*(n+1)/2

    public static void main(String[] args) {
        int nr = 1000;
        nr--;
        int x3 = nr/3;
        int x5 = nr/5;
        int x15 = nr/15;
        
        long sum1 = 3*x3*(x3+1); 
        long sum2 = 5*x5*(x5+1);
        long sum3 = 15*x15*(x15+1);
        
        long sum = (sum1+sum2-sum3)/2;
        System.out.println(sum);
    }
    

    In this case, even if the input is Integer.MAX_VALUE, the computation is very fast ( less than 1 ms ).

    0 讨论(0)
  • 2021-02-04 18:58

    If a number is a multiplier of both 3 and 5 (e.g.: 15, 30, 45, etc.), you will count it twice. So instead of two for loops, you should have one, with a complex condition:

    public class Multiples {
        public static void main (String [] args) {
        int temp = 0;
    
        for (int i = 0; i < 1000; i++) {
            if (i % 3 == 0 || i % 5 == 0) {
                temp = temp + i;
            }
    
        }
    
        System.out.println (temp);
       }
    }
    
    0 讨论(0)
提交回复
热议问题