Embedding higher kinded types (monads!) into the untyped lambda calculus

前端 未结 3 901
谎友^
谎友^ 2021-02-04 17:58

It\'s possible to encode various types in the untyped lambda calculus through higher order functions.

Examples:
zero  = λfx.      x
one   = λfx.     fx
two   = λ         


        
相关标签:
3条回答
  • 2021-02-04 18:15

    You are mixing up the type level with the value level. In untyped lambda calculus there are no monads. There can be monadic operations (value level), but not monads (type level). The operations themselves can be the same, though, so you don't lose any expressive power. So the question itself doesn't really make sense.

    0 讨论(0)
  • 2021-02-04 18:15

    It's possible to represent pretty much any type you want. But since monadic operations are implemented differently for every type, it is not possible to write >>= once and have it work for every instance.

    However, you can write generic functions that depend on evidence of the instance of the typeclass. Consider e here to be a tuple, where fst e contains a "bind" definition, and snd e contains a "return" definition.

    bind = λe. fst e    -- after applying evidence, bind looks like λmf. ___
    return = λe. snd e  -- after applying evidence, return looks like λx. ___
    
    fst = λt. t true
    snd = λt. t false
    
    -- join x = x >>= id
    join = λex. bind e x (λz. z)
    
    -- liftM f m1 = do { x1 <- m1; return (f x1) }
    -- m1 >>= \x1 -> return (f x1)
    liftM = λefm. bind e m (λx. return e (f x))
    

    You would then have to define an "evidence tuple" for every instance of Monad. Notice that the way we defined bind and return: they work just like the other "generic" Monad methods we have defined: they must first be given evidence of Monad-ness, and then they function as expected.

    We can represent Maybe as a function that takes 2 inputs, the first is a function to perform if it is Just x, and the second is a value to replace it with if it is Nothing.

    just = λxfz. f x
    nothing = λfz. z
    
    -- bind and return for maybes
    bindMaybe = λmf. m f nothing
    returnMaybe = just
    
    maybeMonadEvidence = tuple bindMaybe returnMaybe
    

    Lists are similar, represent a List as its folding function. Therefore, a list is a function that takes 2 inputs, a "cons" and an "empty". It then performs foldr myCons myEmpty on the list.

    nil = λcz. z
    cons = λhtcz. c h (t c z)
    
    bindList = λmf. concat (map f m)
    returnList = λx. cons x nil
    
    listMonadEvidence = tuple bindList returnList
    
    -- concat = foldr (++) []
    concat = λl. l append nil
    
    -- append xs ys = foldr (:) ys xs
    append = λxy. x cons y
    
    -- map f = foldr ((:) . f) []
    map = λfl. l (λx. cons (f x)) nil
    

    Either is also straightforward. Represent an either type as a function that takes two functions: one to apply if it is a Left, and another to apply if it is a Right.

    left = λlfg. f l
    right = λrfg. g r
    
    -- Left l >>= f = Left l
    -- Right r >>= f = f r
    bindEither = λmf. m left f
    returnEither = right
    
    eitherMonadEvidence = tuple bindEither returnEither
    

    Don't forget, functions themselves (a ->) form a monad. And everything in the lambda calculus is a function...so...don't think about it too hard. ;) Inspired directly from the source of Control.Monad.Instances

    -- f >>= k = \ r -> k (f r) r
    bindFunc = λfkr. k (f r) r
    -- return = const
    returnFunc = λxy. x
    
    funcMonadEvidence = tuple bindFunc returnFunc
    
    0 讨论(0)
  • 2021-02-04 18:15

    Well, we already have tuples and booleans, hence we can represent Either and in turn any non-recursive sum type based on that:

    type Either a b = (Bool, (a, b))
    type Maybe a    = Either () a
    

    And Maybe is a member of the Monad type class. Translation to lambda notation is left as exercise.

    0 讨论(0)
提交回复
热议问题