I have the situation that I have a small binary image that has one shape, around which I want to find the best fitting rotated rectangle (not b
OK, my solution: Approach:
Rotate this center point back by the inverse rotation matrix
cv::RotatedRect Utilities::getBoundingRectPCA( cv::Mat& binaryImg ) {
cv::RotatedRect result;
//1. convert to matrix that contains point coordinates as column vectors
int count = cv::countNonZero(binaryImg);
if (count == 0) {
std::cout << "Utilities::getBoundingRectPCA() encountered 0 pixels in binary image!" << std::endl;
return cv::RotatedRect();
}
cv::Mat data(2, count, CV_32FC1);
int dataColumnIndex = 0;
for (int row = 0; row < binaryImg.rows; row++) {
for (int col = 0; col < binaryImg.cols; col++) {
if (binaryImg.at<unsigned char>(row, col) != 0) {
data.at<float>(0, dataColumnIndex) = (float) col; //x coordinate
data.at<float>(1, dataColumnIndex) = (float) (binaryImg.rows - row); //y coordinate, such that y axis goes up
++dataColumnIndex;
}
}
}
//2. perform PCA
const int maxComponents = 1;
cv::PCA pca(data, cv::Mat() /*mean*/, CV_PCA_DATA_AS_COL, maxComponents);
//result is contained in pca.eigenvectors (as row vectors)
//std::cout << pca.eigenvectors << std::endl;
//3. get angle of principal axis
float dx = pca.eigenvectors.at<float>(0, 0);
float dy = pca.eigenvectors.at<float>(0, 1);
float angle = atan2f(dy, dx) / (float)CV_PI*180.0f;
//find the bounding rectangle with the given angle, by rotating the contour around the mean so that it is up-right
//easily finding the bounding box then
cv::Point2f center(pca.mean.at<float>(0,0), binaryImg.rows - pca.mean.at<float>(1,0));
cv::Mat rotationMatrix = cv::getRotationMatrix2D(center, -angle, 1);
cv::Mat rotationMatrixInverse = cv::getRotationMatrix2D(center, angle, 1);
std::vector<std::vector<cv::Point> > contours;
cv::findContours(binaryImg, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
if (contours.size() != 1) {
std::cout << "Warning: found " << contours.size() << " contours in binaryImg (expected one)" << std::endl;
return result;
}
//turn vector of points into matrix (with points as column vectors, with a 3rd row full of 1's, i.e. points are converted to extended coords)
cv::Mat contourMat(3, contours[0].size(), CV_64FC1);
double* row0 = contourMat.ptr<double>(0);
double* row1 = contourMat.ptr<double>(1);
double* row2 = contourMat.ptr<double>(2);
for (int i = 0; i < (int) contours[0].size(); i++) {
row0[i] = (double) (contours[0])[i].x;
row1[i] = (double) (contours[0])[i].y;
row2[i] = 1;
}
cv::Mat uprightContour = rotationMatrix*contourMat;
//get min/max in order to determine width and height
double minX, minY, maxX, maxY;
cv::minMaxLoc(cv::Mat(uprightContour, cv::Rect(0, 0, contours[0].size(), 1)), &minX, &maxX); //get minimum/maximum of first row
cv::minMaxLoc(cv::Mat(uprightContour, cv::Rect(0, 1, contours[0].size(), 1)), &minY, &maxY); //get minimum/maximum of second row
int minXi = cvFloor(minX);
int minYi = cvFloor(minY);
int maxXi = cvCeil(maxX);
int maxYi = cvCeil(maxY);
//fill result
result.angle = angle;
result.size.width = (float) (maxXi - minXi);
result.size.height = (float) (maxYi - minYi);
//Find the correct center:
cv::Mat correctCenterUpright(3, 1, CV_64FC1);
correctCenterUpright.at<double>(0, 0) = maxX - result.size.width/2;
correctCenterUpright.at<double>(1,0) = maxY - result.size.height/2;
correctCenterUpright.at<double>(2,0) = 1;
cv::Mat correctCenterMat = rotationMatrixInverse*correctCenterUpright;
cv::Point correctCenter = cv::Point(cvRound(correctCenterMat.at<double>(0,0)), cvRound(correctCenterMat.at<double>(1,0)));
result.center = correctCenter;
return result;
}
If understand the problem correctly, you're saying the method of using findContours
and minAreaRect
suffers from jitter/wobbling due to the noisy input data. PCA is not more robust against this noise, so I don't see why you think finding the orientation of the pattern this way won't be as bad as your current code.
If you need temporal smoothness a commonly used and simple solution is to use a filter, even a very simple filter like an alpha-beta filter probably gives you the smoothness you want. Say at frame n
you estimate the parameters of the rotated rectangle A
, and in frame n+1
you have the rectangle with the estimated parameters B
. Instead of drawing the rectangle with B
you find C
which is between A
and B
, and then draw a rectangle with C
in frame n+1
.
Here's another approach (just a guess)
Wikipedia page on Principal Component Analysis says:
PCA can be thought of as fitting an n-dimensional ellipsoid to the data ...
And as your data is 2D, you can use the cv::fitEllipse
function to fit an ellipse to your data and use the coordinates of the generated RotatedRect
to calculate the angle. This gives better results as compared to cv::minAreaRect
.