What it seems to me is that you are asked to return the the nth fibonacci no., where n is the passed parameter. You can employ various methods to answer this question, whereas all these varies in time complexity and code complexity.
Method 1 ( Use recursion )
A simple method that is a direct recusrive implementation mathematical recurance relation given above.
int fib(int n)
{
if ( n <= 1 )
return n;
return fib(n-1) + fib(n-2);
}
Time Complexity: T(n) = T(n-1) + T(n-2) which is exponential.
We can observe that this implementation does a lot of repeated work (see the following recursion tree). So this is a bad implementation for nth Fibonacci number.
fib(5)
/ \
fib(4) fib(3)
/ \ / \
fib(3) fib(2) fib(2) fib(1)
/ \ / \ / \
fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)
/ \
fib(1) fib(0)
Extra Space: O(n) if we consider the fuinction call stack size, otherwise O(1).
Method 2 ( Use Dynamic Programming )
We can avoid the repeated work done is the method 1 by storing the Fibonacci numbers calculated so far.
int fib(int n)
{
/* Declare an array to store fibonacci numbers. */
int f[n+1];
int i;
/* 0th and 1st number of the series are 0 and 1*/
f[0] = 0;
f[1] = 1;
for (i = 2; i <= n; i++)
{
/* Add the previous 2 numbers in the series
and store it */
f[i] = f[i-1] + f[i-2];
}
return f[n];
}
Time Complexity: O(n)
Extra Space: O(n)
Method 3 ( Space Otimized Method 2 )
We can optimize the space used in method 2 by storing the previous two numbers only because that is all we need to get the next Fibannaci number in series.
int fib(int n)
{
int a = 0, b = 1, c, i;
if( n == 0)
return a;
for (i = 2; i <= n; i++)
{
c = a + b;
a = b;
b = c;
}
return b;
}
Time Complexity: O(n)
Extra Space: O(1)
Method 4 ( Using power of the matrx {{1,1},{0,1}} )
This another O(n) which relies on the fact that if we n times multiply the matrix M = {{1,1},{0,1}} to itself (in other words calculate power(M, n )), then we get the (n+1)th Fibonacci number as the element at row and column (0, 0) in the resultant matrix.
The matrix representation gives the following closed expression for the Fibonacci numbers:
/* Helper function that multiplies 2 matricies F and M of size 2*2, and
puts the multiplication result back to F[][] */
void multiply(int F[2][2], int M[2][2]);
/* Helper function that calculates F[][] raise to the power n and puts the
result in F[][]
Note that this function is desinged only for fib() and won't work as general
power function */
void power(int F[2][2], int n);
int fib(int n)
{
int F[2][2] = {{1,1},{1,0}};
if(n == 0)
return 0;
power(F, n-1);
return F[0][0];
}
void multiply(int F[2][2], int M[2][2])
{
int x = F[0][0]*M[0][0] + F[0][1]*M[1][0];
int y = F[0][0]*M[0][1] + F[0][1]*M[1][1];
int z = F[1][0]*M[0][0] + F[1][1]*M[1][0];
int w = F[1][0]*M[0][1] + F[1][1]*M[1][1];
F[0][0] = x;
F[0][1] = y;
F[1][0] = z;
F[1][1] = w;
}
void power(int F[2][2], int n)
{
int i;
int M[2][2] = {{1,1},{1,0}};
// n - 1 times multiply the matrix to {{1,0},{0,1}}
for ( i = 2; i <= n; i++ )
multiply(F, M);
}
Time Complexity: O(n)
Extra Space: O(1)
Method 5 ( Optimized Method 4 )
The method 4 can be optimized to work in O(Logn) time complexity. We can do recursive multiplication to get power(M, n) in the prevous method (Similar to the optimization done in this post)
void multiply(int F[2][2], int M[2][2]);
void power(int F[2][2], int n);
/* function that returns nth Fibonacci number */
int fib(int n)
{
int F[2][2] = {{1,1},{1,0}};
if(n == 0)
return 0;
power(F, n-1);
return F[0][0];
}
/* Optimized version of power() in method 4 */
void power(int F[2][2], int n)
{
if( n == 0 || n == 1)
return;
int M[2][2] = {{1,1},{1,0}};
power(F, n/2);
multiply(F, F);
if( n%2 != 0 )
multiply(F, M);
}
void multiply(int F[2][2], int M[2][2])
{
int x = F[0][0]*M[0][0] + F[0][1]*M[1][0];
int y = F[0][0]*M[0][1] + F[0][1]*M[1][1];
int z = F[1][0]*M[0][0] + F[1][1]*M[1][0];
int w = F[1][0]*M[0][1] + F[1][1]*M[1][1];
F[0][0] = x;
F[0][1] = y;
F[1][0] = z;
F[1][1] = w;
}
Time Complexity: O(Logn)
Extra Space: O(Logn) if we consider the function call stack size, otherwise O(1).
Driver Program:
int main()
{
int n = 9;
printf("%d", fib(9));
getchar();
return 0;
}
References:
http://en.wikipedia.org/wiki/Fibonacci_number
http://www.ics.uci.edu/~eppstein/161/960109.html