For silly reasons I\'ll not go into here, I need the commented out line to work and the line above it it to not work:
template
Here's a solution: Instead of truncating N
from the back, I just truncate sizeof...(Args) - N
from the front:
#include <tuple>
/* Concatenator helper */
template <typename T, typename Tuple> struct cat;
template <typename T, typename ...Args>
struct cat<T, std::tuple<Args...>>
{
typedef typename std::tuple<T, Args...> value;
};
/* Head-of-tuple */
template <unsigned int, typename...> struct tuple_head;
// Base case. Need to specialize twice, once for one and once for variadic types
template <typename ...Args>
struct tuple_head<0, Args...>
{
typedef std::tuple<> value;
};
template <typename T>
struct tuple_head<0, T>
{
typedef std::tuple<> value;
};
// Recursion step
template <unsigned int N, typename T, typename ...Args>
struct tuple_head<N, T, Args...>
{
typedef typename cat<T, typename tuple_head<N - 1, Args...>::value>::value value;
};
/* User interface */
template <unsigned int N, typename ...Args>
struct PartialTuple
{
typedef typename tuple_head<sizeof...(Args) - N, Args...>::value type;
};
/* Usage */
#include <string>
int main()
{
// I want this to not work...
//PartialTuple<1, std::string, std::string, int, int>::type A{"test", 5, 1};
// I want this to work...
PartialTuple<1, std::string, std::string, int, int>::type B("test", "test", 5);
PartialTuple<0, std::string, std::string, int, int>::type C("test", "test", 5, 6);
}
I have done something similar using Boost.MPL and Boost.Fusion: compute the type sequence using the MPL facilities such as push_back
, then convert it to a fusion::vector
with fusion::as_vector
and MPL adaptors. I already had a helper to convert a fusion::vector
to std::tuple
though.
I've made my code work a little bit like lists in Haskell - because, well, TMP is purely functional language inside C++.
add_to_pack
is equivalent to Haskell's list constructor (:)
. drop_from_end
is implemented as (in Haskell notation) \x list -> take (length list - x) list
, where take n
just takes first n
elements of the list.
I suppose you could use std::tuple
directly instead of pack
, but I liked this solution better, because it doesn't misuse tuple as template parameter pack holder. :)
Here's the code:
#include <tuple>
#include <type_traits> // for std::conditional
template <typename... Pack>
struct pack
{ };
template <typename, typename>
struct add_to_pack;
template <typename A, typename... R>
struct add_to_pack<A, pack<R...>>
{
typedef pack<A, R...> type;
};
template <typename>
struct convert_to_tuple;
template <typename... A>
struct convert_to_tuple<pack<A...>>
{
typedef std::tuple<A...> type;
};
template <int, typename...>
struct take;
template <int N>
struct take<N>
{
typedef pack<> type;
};
template <int N, typename Head, typename... Tail>
struct take<N, Head, Tail...>
{
typedef
typename std::conditional<
(N > 0),
typename add_to_pack<
Head,
typename take<
N - 1,
Tail...
>::type
>::type,
pack<>
>::type type;
};
template <int N, typename... A>
struct drop_from_end
{
// Add these asserts if needed.
//static_assert(N >= 0,
// "Cannot drop negative number of elements!");
//static_assert(N <= static_cast<int>(sizeof...(A)),
// "Cannot drop more elements than size of pack!")
typedef
typename convert_to_tuple<
typename take<
static_cast<int>(sizeof...(A)) - N,
A...
>::type
>::type type;
};
int main()
{
drop_from_end<2, const char*, double, int, int>::type b{"pi", 3.1415};
}
And here's the code at work: via ideone.com.
The take
struct is more or less equivalent to following Haskell code:
take n [] = []
take n (x:xs)
| n > 0 = x : take (n - 1) xs
| otherwise = []
I've been playing with it all night and finally got something to work (changed my casing to match the STL):
template<uint _N, typename... _All>
struct reverse_tuple_outer
{
template<typename _Head, typename... _Tail>
struct reverse_tuple_inner: reverse_tuple_outer<_N-1, _Head, _All...>::template reverse_tuple_inner<_Tail...> { };
};
template<typename... _All>
struct reverse_tuple_outer<0, _All...>
{
template<typename... _Tail>
struct reverse_tuple_inner {
typedef std::tuple<_All...> type;
};
};
template<typename... _Args>
struct reverse_tuple
{
typedef typename reverse_tuple_outer<sizeof...(_Args)>::template reverse_tuple_inner<_Args...>::type type;
};
template<typename... _Args>
struct strip_and_reverse_tuple;
template<typename... _Args>
struct strip_and_reverse_tuple<std::tuple<_Args...>>
{
typedef typename reverse_tuple<_Args...>::type type;
};
template<uint _N, typename... _Args>
struct partial_tuple
{
typedef typename strip_and_reverse_tuple<typename reverse_tuple_outer<sizeof...(_Args)-_N>::template reverse_tuple_inner<_Args...>::type>::type type;
};
int main()
{
//partial_tuple<1, std::string, std::string, int, int>::type A{"test", 5, 1};
partial_tuple<1, std::string, std::string, int, int>::type B{"test", "test", 5};
}
As an added bonus, I also have reverse_tuple
, should I ever need it.