I\'m trying to apply the Sobel filter on an image to detect edges using scipy. I\'m using Python 3.2 (64 bit) and scipy 0.9.0 on Windows 7 Ultimate (64 bit). Currently my code i
1) Use a higher precision. 2) You are only calculating the approximation of the derivative along the zero axis. The 2D Sobel operator is explained on Wikipedia. Try this code:
import numpy
import scipy
from scipy import ndimage
im = scipy.misc.imread('bike.jpg')
im = im.astype('int32')
dx = ndimage.sobel(im, 0) # horizontal derivative
dy = ndimage.sobel(im, 1) # vertical derivative
mag = numpy.hypot(dx, dy) # magnitude
mag *= 255.0 / numpy.max(mag) # normalize (Q&D)
scipy.misc.imsave('sobel.jpg', mag)
I couldn't comment on cgohlke's answer so I repeated his answer with a corrction. Parameter 0 is used for vertical derivative and 1 for horizontal derivative (first axis of an image array is y/vertical direction - rows, and second axis is x/horizontal direction - columns). Just wanted to warn other users, because I lost 1 hour searching for mistake in the wrong places.
import numpy
import scipy
from scipy import ndimage
im = scipy.misc.imread('bike.jpg')
im = im.astype('int32')
dx = ndimage.sobel(im, 1) # horizontal derivative
dy = ndimage.sobel(im, 0) # vertical derivative
mag = numpy.hypot(dx, dy) # magnitude
mag *= 255.0 / numpy.max(mag) # normalize (Q&D)
scipy.misc.imsave('sobel.jpg', mag)
or you can use :
def sobel_filter(im, k_size):
im = im.astype(np.float)
width, height, c = im.shape
if c > 1:
img = 0.2126 * im[:,:,0] + 0.7152 * im[:,:,1] + 0.0722 * im[:,:,2]
else:
img = im
assert(k_size == 3 or k_size == 5);
if k_size == 3:
kh = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype = np.float)
kv = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype = np.float)
else:
kh = np.array([[-1, -2, 0, 2, 1],
[-4, -8, 0, 8, 4],
[-6, -12, 0, 12, 6],
[-4, -8, 0, 8, 4],
[-1, -2, 0, 2, 1]], dtype = np.float)
kv = np.array([[1, 4, 6, 4, 1],
[2, 8, 12, 8, 2],
[0, 0, 0, 0, 0],
[-2, -8, -12, -8, -2],
[-1, -4, -6, -4, -1]], dtype = np.float)
gx = signal.convolve2d(img, kh, mode='same', boundary = 'symm', fillvalue=0)
gy = signal.convolve2d(img, kv, mode='same', boundary = 'symm', fillvalue=0)
g = np.sqrt(gx * gx + gy * gy)
g *= 255.0 / np.max(g)
#plt.figure()
#plt.imshow(g, cmap=plt.cm.gray)
return g
for more see here