Keras Model.fit Verbose Formatting

后端 未结 2 969
情书的邮戳
情书的邮戳 2021-02-04 11:37

I\'m running Keras model.fit() in Jupyter notebook, and the output is very messy if verbose is set to 1:

    Train on 6400 samples, validate on 800 samples
    E         


        
相关标签:
2条回答
  • 2021-02-04 12:29

    You can try the Keras-adapted version of the TQDM progress bar library.

    • The original TQDM library: https://github.com/tqdm/tqdm
    • The Keras version of TQDM: https://github.com/bstriner/keras-tqdm

    The usage instructions can be brought down to:

    1. install e.g. per pip install keras-tqdm (stable) or pip install git+https://github.com/bstriner/keras-tqdm.git (for latest dev-version)

    2. import the callback function with from keras_tqdm import TQDMNotebookCallback

    3. run Keras' fit or fit_generator with verbose=0 or verbose=2 settings, but with a callback to the imported TQDMNotebookCallback, e.g. model.fit(X_train, Y_train, verbose=0, callbacks=[TQDMNotebookCallback()])

    The result:

    0 讨论(0)
  • 2021-02-04 12:43

    Took me a while to see this but tqdm (version >= 4.41.0) has also just added built-in support for keras so you could do:

    from tqdm.keras import TqdmCallback
    ...
    model.fit(..., verbose=0, callbacks=[TqdmCallback(verbose=2)])
    

    This turns off keras' progress (verbose=0), and uses tqdm instead. For the callback, verbose=2 means separate progressbars for epochs and batches. 1 means clear batch bars when done. 0 means only show epochs (never show batch bars).

    If there are any issues with it please feel free to post on https://github.com/tqdm/tqdm/issues

    0 讨论(0)
提交回复
热议问题