I have started to use python for analysis. I would like to do the following:
I think you need to distinguish non-parametric density (the one implemented in scipy.stats.kde
) from parametric density (the one in the StackOverflow question you mention). To illustrate the difference between these two, try the following code.
import pandas as pd
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
np.random.seed(0)
gaussian1 = -6 + 3 * np.random.randn(1700)
gaussian2 = 4 + 1.5 * np.random.randn(300)
gaussian_mixture = np.hstack([gaussian1, gaussian2])
df = pd.DataFrame(gaussian_mixture, columns=['data'])
# non-parametric pdf
nparam_density = stats.kde.gaussian_kde(df.values.ravel())
x = np.linspace(-20, 10, 200)
nparam_density = nparam_density(x)
# parametric fit: assume normal distribution
loc_param, scale_param = stats.norm.fit(df)
param_density = stats.norm.pdf(x, loc=loc_param, scale=scale_param)
fig, ax = plt.subplots(figsize=(10, 6))
ax.hist(df.values, bins=30, normed=True)
ax.plot(x, nparam_density, 'r-', label='non-parametric density (smoothed by Gaussian kernel)')
ax.plot(x, param_density, 'k--', label='parametric density')
ax.set_ylim([0, 0.15])
ax.legend(loc='best')
From the graph, we see that the non-parametric density is nothing but a smoothed version of histogram. In histogram, for a particular observation x=x0
, we use a bar to represent it (put all probability mass on that single point x=x0
and zero elsewhere) whereas in non-parametric density estimation, we use a bell-shaped curve (the gaussian kernel) to represent that point (spreads over its neighbourhood). And the result is a smoothed density curve. This internal gaussian kernel has nothing to do with your distributional assumption on the underlying data x
. Its sole purpose is for smoothing.
To get the mode of non-parametric density, we need to do an exhaustive search, as the density is not guaranteed to have uni-mode. As shown in the example above, if you quasi-Newton optimization algo starts between [5,10], it is very likely to end up with a local optimal point rather than the global one.
# get mode: exhastive search
x[np.argsort(nparam_density)[-1]]