Fitting data with integral function

后端 未结 2 998
时光取名叫无心
时光取名叫无心 2021-02-04 11:44

When using curve_fit from scipy.optimize to fit a some data in python, one first defines the fitting function (e.g. a 2nd order polynomial) as follows:

  1. def f
相关标签:
2条回答
  • 2021-02-04 12:04

    Here's an example of fitting a curve defined in terms of an integral. The curve is the integral of sin(t*w)/t+p over t from 0 to Pi. Our x data points correspond to w, and we're adjusting the p parameter to to get the data to fit.

    import math, numpy, scipy.optimize, scipy.integrate
    
    def integrand(t, args):
        w, p = args
        return math.sin(t * w)/t + p
    
    def curve(w, p):
        res = scipy.integrate.quad(integrand, 0.0, math.pi, [w, p])
        return res[0]
    
    vcurve = numpy.vectorize(curve, excluded=set([1]))
    
    truexdata = numpy.asarray([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0])
    trueydata = vcurve(truexdata, 1.0)
    
    xdata = truexdata + 0.1 * numpy.random.randn(8)
    ydata = trueydata + 0.1 * numpy.random.randn(8)
    
    popt, pcov = scipy.optimize.curve_fit(vcurve,
                                          xdata, ydata,
                                          p0=[2.0])
    print popt
    

    That'll print something out fairly close to 1.0, which is what we used as p when we created the trueydata.

    Note that we use numpy.vectorize on the curve function to produce a vectorized version compatible with scipy.optimize.curve_fit.

    0 讨论(0)
  • 2021-02-04 12:07

    Sometimes you can be lucky and you're able to evaluate the integral analytically. In the following example the product of h(t)=exp(-(t-x)**2/2) and a second degree polynomial g(t) is integrated from 0 to infinity. Sympy is used to evaluate the Integral and generate a function usable for curve_fit():

    import sympy as sy
    sy.init_printing()  # LaTeX-like pretty printing of IPython
    
    
    t, x = sy.symbols("t, x", real=True)
    
    h = sy.exp(-(t-x)**2/2)
    
    a0, a1, a2 = sy.symbols('a:3', real=True)  # unknown coefficients
    g = a0 + a1*t + a2*t**2
    
    gh = (g*h).simplify()  # the intgrand
    G = sy.integrate(gh, (t, 0, sy.oo)).simplify()  # integrate from 0 to infinty
    
    # Generate numeric function to be usable by curve_fit()
    G_opt = sy.lambdify((x, t, a0, a1, a2), G)
    
    print(G_opt(1, 2, 3, 4, 5))  # example usage
    

    Note that in general the problem is often ill-posed since the integral does not neccesarily converge in a large enough neighborhood of the solution (which is assumed by curve_fit()).

    0 讨论(0)
提交回复
热议问题