There are at least two different ways of creating a hive table backed with Avro data:
1) Creating a table based on an Avro schema (in this example stored in hdfs):
The following refers to the use-case where no schema file is involved
The schema is stored in 2 places
1. The metastore
2. As part of the data files
All the information for the DESC/SHOW commands is taken from the metastore.
Every DDL change impacts only the metastore.
When you query the data the matching between the 2 schemas is done by the columns names.
If there is a mismatch in the columns types you'll get an error.
create table mytable
stored as avro
as
select 1 as myint
,'Hello' as mystring
,current_date as mydate
;
select * from mytable
;
+-------+----------+------------+
| myint | mystring | mydate |
+-------+----------+------------+
| 1 | Hello | 2017-05-30 |
+-------+----------+------------+
Metastore
select c.column_name
,c.integer_idx
,c.type_name
from metastore.DBS as d
join metastore.TBLS as t on t.db_id = d.db_id
join metastore.SDS as s on s.sd_id = t.sd_id
join metastore.COLUMNS_V2 as c on c.cd_id = s.cd_id
where d.name = 'local_db'
and t.tbl_name = 'mytable'
order by integer_idx
+-------------+-------------+-----------+
| column_name | integer_idx | type_name |
+-------------+-------------+-----------+
| myint | 0 | int |
| mystring | 1 | string |
| mydate | 2 | date |
+-------------+-------------+-----------+
avro-tools
bash-4.1$ avro-tools getschema 000000_0
{
"type" : "record",
"name" : "mytable",
"namespace" : "local_db",
"fields" : [ {
"name" : "myint",
"type" : [ "null", "int" ],
"default" : null
}, {
"name" : "mystring",
"type" : [ "null", "string" ],
"default" : null
}, {
"name" : "mydate",
"type" : [ "null", {
"type" : "int",
"logicalType" : "date"
} ],
"default" : null
} ]
}
alter table mytable change myint dummy1 int;
select * from mytable;
+--------+----------+------------+
| dummy1 | mystring | mydate |
+--------+----------+------------+
| (null) | Hello | 2017-05-30 |
+--------+----------+------------+
alter table mytable add columns (myint int);
select * from mytable;
+--------+----------+------------+-------+
| dummy1 | mystring | mydate | myint |
+--------+----------+------------+-------+
| (null) | Hello | 2017-05-30 | 1 |
+--------+----------+------------+-------+
Metastore
+-------------+-------------+-----------+
| column_name | integer_idx | type_name |
+-------------+-------------+-----------+
| dummy1 | 0 | int |
| mystring | 1 | string |
| mydate | 2 | date |
| myint | 3 | int |
+-------------+-------------+-----------+
avro-tools
(same schema as the original one)
bash-4.1$ avro-tools getschema 000000_0
{
"type" : "record",
"name" : "mytable",
"namespace" : "local_db",
"fields" : [ {
"name" : "myint",
"type" : [ "null", "int" ],
"default" : null
}, {
"name" : "mystring",
"type" : [ "null", "string" ],
"default" : null
}, {
"name" : "mydate",
"type" : [ "null", {
"type" : "int",
"logicalType" : "date"
} ],
"default" : null
} ]
}
Any work against that table is done based on the metadata stored in the Metastore.
When the table is being queried, additional metadata is being used which is the metadata stored in data file.
The query result structure is constructed from the Metastore (See in my example that 4 columns are being returned after the table was altered).
The data returned depends on both schemes - a field with a specific name in the file schema will be mapped to the column with the same name in the Metastore schema.
If the names match but the datatypes don't, an error will arise.
A fields from the data file that does not have a corresponding column name in the Metastore would not be presented.
A column in the Metastore without corresponding field in the data file schema will hold NULL values.
I decided to publish a complementary answer to those given by @DuduMarkovitz.
To make code examples more concise let's clarify that STORED AS AVRO
clause is an equivalent of these three lines:
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
Let's take a look then at what happens when we create a table giving a reference to avro schema stored in hdfs. Here is the schema:
{
"namespace": "io.sqooba",
"name": "user",
"type": "record",
"fields": [
{"name": "id", "type": "int"},
{"name": "name", "type": "string"}
]
}
We create our table with the following command:
CREATE TABLE users_from_avro_schema
STORED AS AVRO
TBLPROPERTIES ('avro.schema.url'='hdfs:///user/tulinski/user.avsc');
Hive has inferred the schema properly, which we can see by calling:
hive> DESCRIBE users_from_avro_schema;
OK
id int
name string
Hive Metastore shows us the same (I use @DuduMarkovitz's query):
+------------------------+-------------+-------------+-----------+
| tbl_name | column_name | integer_idx | type_name |
+------------------------+-------------+-------------+-----------+
| users_from_avro_schema | id | 0 | int |
| users_from_avro_schema | name | 1 | string |
+------------------------+-------------+-------------+-----------+
So far, so good, everything works as we expect.
But let's see what happens when we update avro.schema.url
property to point to the next version of our schema (users_v2.avsc), which is as follows:
{
"namespace": "io.sqooba",
"name": "user",
"type": "record",
"fields": [
{"name": "id", "type": "int"},
{"name": "name", "type": "string"},
{"name": "email", "type": ["null", "string"], "default":null}
]
}
We simply added another field called email.
Now we update a table property pointing to the avro schema in hdfs:
ALTER TABLE users_from_avro_schema SET TBLPROPERTIES('avro.schema.url'='hdfs:///user/tulinski/user_v2.avsc');
Has table metadata been changed?
hive> DESCRIBE users_from_avro_schema;
OK
id int
name string
email string
Yeah, cool! But do you expect that Hive Metastore contains this additional column?
Unfortunately in Metastore nothing changed:
+------------------------+-------------+-------------+-----------+
| tbl_name | column_name | integer_idx | type_name |
+------------------------+-------------+-------------+-----------+
| users_from_avro_schema | id | 0 | int |
| users_from_avro_schema | name | 1 | string |
+------------------------+-------------+-------------+-----------+
I suspect that Hive has the following strategy of inferring schema: It tries to get it from a SerDe class specified for a given table. When SerDe cannot provide the schema Hive looks into the metastore.
Let's check that by removing avro.schema.url
property:
hive> ALTER TABLE users_from_avro_schema UNSET TBLPROPERTIES ('avro.schema.url');
OK
Time taken: 0.33 seconds
hive> DESCRIBE users_from_avro_schema;
OK
id int
name string
Time taken: 0.363 seconds, Fetched: 2 row(s)
Describe shows us data stored in the Metastore. Let's modify them by adding a column:
ALTER TABLE users_from_avro_schema ADD COLUMNS (phone string);
It of course changes Hive Metastore:
+------------------------+-------------+-------------+-----------+
| tbl_name | column_name | integer_idx | type_name |
+------------------------+-------------+-------------+-----------+
| users_from_avro_schema | id | 0 | int |
| users_from_avro_schema | name | 1 | string |
| users_from_avro_schema | phone | 2 | string |
+------------------------+-------------+-------------+-----------+
But when we set avro.schema.url
again back to user_v2.avsc
what is in Hive Metastore doesn't matter any more:
hive> ALTER TABLE users_from_avro_schema SET TBLPROPERTIES('avro.schema.url'='hdfs:///user/tulinski/user_v2.avsc');
OK
Time taken: 0.268 seconds
hive> DESCRIBE users_from_avro_schema;
OK
id int
name string
email string
Avro schema takes precedence over the Metastore.
The above example shows that we should rather avoid mixing hive schema changes with avro schema evolution, because otherwise we can easily get into big mess and inconsistency between Hive Metastore and actual schema which is used while reading and writing data. The first inconsistency occurs when we change our avro schema definition by updating avro.schema.url
property, but we can live with that if we are aware of Hive strategy of inferring schema. I haven't checked in Hive's source code whether my suspicions about schema logic are correct, but the above example convince me what happens underneath.
I extended my answer to show that even when there is a conflict between Avro schema and Hive Metastore data which comply Avro schema can be read. Please have a look again at my example above. Our table definition points to avro schema having three fields:
id int
name string
email string
whereas in Hive Metastore there are the following columns:
id int
name string
phone string
email vs phone
Let's create an avro file containing a single user record complying user_v2.avsc
schema. This is its json representation:
{
"id": 123,
"name": "Tomek",
"email": {"string": "tomek@tomek"}
}
To create the avro file we call:
java -jar avro-tools-1.8.2.jar fromjson --schema-file user_v2.avsc user_tomek_v2.json > user_tomek_v2.avro
We are able to query our table despite the fact that Hive Metastore doesn't contain email
column and it contains phone
column instead:
hive> set hive.cli.print.header=true;
hive> select * from users_from_avro_schema;
OK
users_from_avro_schema.id users_from_avro_schema.name users_from_avro_schema.email
123 Tomek tomek@tomek