I have this code which generates power set of an array of size 4 (number is just example, less combinations to write...).
#define ARRAY_SIZE 4
unsigned int i,
Use a buffer array and then sort it using qsort
?
I used a i_max*5
elements array : 4 unsigned int
for the values (0 means empty, 1 to 4 otherwise) and a final unsigned int for the subset length. Then, you just have to roll with your custom comparator. If you want to a more streamlined algorithm, take a look at insertion sort : http://en.wikipedia.org/wiki/Insertion_sort
Output:
1,
2,
1,2,
3,
1,3,
2,3,
1,2,3,
4,
1,4,
2,4,
1,2,4,
3,4,
1,3,4,
2,3,4,
1,2,3,4,
Sorting
1,
2,
3,
4,
1,2,
1,3,
1,4,
2,3,
2,4,
3,4,
1,2,3,
1,2,4,
1,3,4,
2,3,4,
1,2,3,4,
Code:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int comp (const void * elem1, const void * elem2) {
unsigned int *f = (unsigned int*)elem1;
unsigned int *s = (unsigned int*)elem2;
unsigned int i;
//printf("%d,%d,%d,%d,%d\n", f[0],f[1],f[2],f[3],f[4]);
//printf("%d,%d,%d,%d,%d\n", s[0],s[1],s[2],s[3],s[4]);
printf("\n");
// Size comparison
if( f[4] > s[4] ) return 1;
if( f[4] < s[4] ) return -1;
// Value comparison
for ( i = 0; i < 4; i++)
{
if (f[i] > s[i]) return 1;
if (f[i] < s[i]) return -1;
}
return 0;
}
int main(int argc, char *argv[])
{
unsigned int i, j, bits, i_max = (1U << 4);
unsigned int *array;
unsigned int index;
array = calloc( 5*i_max, sizeof(unsigned int));
// Non-sorted array
for (i = 0; i < i_max ; ++i) {
// Zero init for array
memset(array + i*5, 0, 5*sizeof(*array));
index = 0;
for (bits = i, j = 0; bits; bits >>= 1, ++j) {
if (bits & 1)
{
// Storage
array[i*5 + index] = j+1;
index = (index + 1) % 4; // avoid buffer overflows
array[i*5 + 4] = array[i*5 + 4] + 1 ; // increment subset length
//printf("%d,", array[i*5 + index - 1]);
}
}
printf("\n");
}
// Print original array, without the zeros
for (i =0; i < i_max; i++)
{
for(j = 0; j < 4 ; j++)
{
if( array[i*5 + j] )
printf("%d,", array[i*5 + j]);
}
printf("\n");
}
printf ("Sorting\n");
qsort (array, i_max, 5*sizeof(unsigned int), comp);
// Print the sorted array, without the zeros
for (i =0; i < i_max; i++)
{
for(j = 0; j < 4 ; j++)
{
if( array[i*5 + j] )
printf("%d,", array[i*5 + j]);
}
printf("\n");
}
free(array);
return 0;
}
The code:
(I know some people don't like raw arrays / pointers, but it's so much easier to get great performance for this problem with that as opposed to pretty containers)
void powerSet(char *arr, int arrLen, int pos, int startPos, int length)
{
if (length == 0)
printf("%.*s\n", pos, arr);
else
for (int i = startPos; i < arrLen; i++)
{
std::swap(arr[pos], arr[i]);
powerSet(arr, arrLen, pos+1, i+1, length - 1);
std::swap(arr[pos], arr[i]);
}
}
And the calling function:
void powerSet(char *arr, int arrLen)
{
for (int i = 1; i <= arrLen; i++)
powerSet(arr, 4, 0, 0, i);
}
powerSet("1234", 4)
prints:
1
2
3
4
12
13
14
23
24
34
123
124
134
234
1234
Test.
I used this answer to make following code:
Basically you need to print nCr
sequences for all r
#include <iostream>
#include <vector>
using namespace std;
//This generates all nCr sequences
void display(const std::vector<int> & v,
std::vector<int>& comb,
int offset, int k) {
if (k == 0) {
std::cout<<"{";
for(auto &x:comb)
std::cout<<x<<",";
std::cout<<"\b}"<<std::endl;
return;
}
for (int i = offset; i <= v.size() - k; ++i) {
comb.push_back(v[i]);
display(v,comb,i+1, k-1);
comb.pop_back();
}
}
int main() {
int n = 4;
std::vector<int> v,comb;
for (int i = 0; i < n; ++i)
v.push_back(i+1);
for (int i = 1; i <= n; ++i)
display(v,comb,0, i);
return 0;
}
See here
Write a function to generate all items of a fixed size. Note that the first such item is 1,..,k while the last is (n-k+1),..,n. This is very simple, you basically have to reimplement basic counting: you increment the last "digit", until you reach n. Then you reset to 1 and continue in the same fashion to its left.
Then just have k run from 1 (0) to n.
Here is one proposal for the internal algorithm. It's rather ugly, though.
void out(std::vector<int> const& item) {
char del = '{';
for (auto it = item.begin(); it != item.end(); ++it) {
std::cout << del << *it;
del = ',';
}
std::cout << "}\n";
}
bool ascending(std::vector<int> const& item) {
int last = 0;
for (auto it = item.begin(); it != item.end(); ++it) {
if (*it <= last)
return false;
last = *it;
}
return true;
}
void allk(int k, int n) {
std::vector<int> item;
item.reserve(k+1);
for (int i = 1; i <= k; i++)
item.push_back(i);
bool valid = true;
while (valid) {
out(item);
do {
valid = false;
for (auto it = item.rbegin(); it != item.rend(); ++it) {
if (*it == n) {
*it = 1;
} else {
++*it;
valid = true;
break;
}
}
} while (valid && !ascending(item));
}
}
Here's a version that goes down to the metal with bit-twiddling. It uses a modified version of the famous Hackers' Delight snoob() function that generates the next greater subset with the Same Number Of One Bits. See the Chess Programming Wiki (a source of many such bit-twiddling routines).
#include <cstdint>
#include <iostream>
using U64 = uint64_t;
// print bit indices of x
void setPrint(U64 x)
{
std::cout << "{ ";
for(auto i = 1; x; x >>= 1, ++i)
if (x & 1) std::cout << i << ", ";
std::cout << "}\n";
}
// get next greater subset of set with
// Same Number Of One Bits
U64 snoob (U64 sub, U64 set) {
U64 tmp = sub-1;
U64 rip = set & (tmp + (sub & (0-sub)) - set);
for(sub = (tmp & sub) ^ rip; sub &= sub-1; rip ^= tmp, set ^= tmp)
tmp = set & (0-set);
return rip;
}
void generatePowerSet(unsigned n)
{
auto set = (1ULL << n) - 1; // n bits
for (unsigned i = 0; i < n+1; ++i) {
auto sub = (1ULL << i) - 1; // i bits
U64 x = sub; U64 y;
do {
setPrint(x);
y = snoob(x, set); // get next subset
x = y;
} while ((y > sub));
}
}
int main()
{
generatePowerSet(4);
}
Live Example with output in lexicographic order (bonus feature)
{ }
{ 1, }
{ 2, }
{ 3, }
{ 4, }
{ 1, 2, }
{ 1, 3, }
{ 2, 3, }
{ 1, 4, }
{ 2, 4, }
{ 3, 4, }
{ 1, 2, 3, }
{ 1, 2, 4, }
{ 1, 3, 4, }
{ 2, 3, 4, }
{ 1, 2, 3, 4, }