Sum of products of two arrays (dotproduct)

前端 未结 6 1360
难免孤独
难免孤独 2021-02-04 05:49

First off, I know my title can be formulated better, but my math classes are so far gone I can\'t remember the correct words anymore..

I need to do something like this (

相关标签:
6条回答
  • 2021-02-04 06:13

    Solutions with LINQ

    int[] digits1 = new int[10]{0,1,2,3,4,5,6,7,8,9};
    int[] digits2 = new int[10]{0,1,2,3,4,5,6,7,8,9};
    
    int result1 = digits1.Zip(digits2, (x, y) => x * y).Sum();
    
    int result2 = digits1.Select((x, y) => x * digits2.ElementAt(y)).Sum();
    
    int result3 = digits1.Select((n, i) => n * digits2[i]).Sum();
    
    // Ani answer
    int result4 = Enumerable.Range(0, digits1.Length)
        .Sum(i => digits1[i] * digits2[i]);
    

    Performance test 100000 iterations:

    Queries
    Fn: Result 1       Ticks 135306
    Fn: Result 2       Ticks 2470614
    Fn: Result 3       Ticks 130034
    Fn: Result 4       Ticks 123374
    
    -------------
    
    Fastest
    Fn: Result 4       Ticks 123374
    Fn: Result 3       Ticks 130034
    Fn: Result 1       Ticks 135306
    Fn: Result 2       Ticks 2470614
    
    0 讨论(0)
  • 2021-02-04 06:15

    Even faster is to unroll the loop

    Test("Regular Loop", () =>
                {
                    int result = 0;
                    for (int i = 0; i < digits1.Length; i++)
                    {
                        result += digits1[i] * digits2[i];
                    }
                    return result;
                });
                // This will fail if vectors are not a multiple of 4 in length.
                Test("Unroll 4x", () =>
                {
                    int result = 0;
                    for (int i = 0; i < digits1.Length; i+=4)
                    {
                        result += digits1[i] * digits2[i];
                        result += digits1[i+1] * digits2[i+1];
                        result += digits1[i+2] * digits2[i+2];
                        result += digits1[i+3] * digits2[i+3];
                    }
                    return result;
                });
    
                Test("Dynamic unroll", () =>
                {
                    int result = 0;
                    int limit = (digits1.Length/8)*8;
                    int reminderLimit = digits1.Length;
    
                    if (digits1.Length >= 8)
                    {
                        for (int i = 0; i < limit; i+=8)
                        {
                            result += digits1[i] * digits2[i];
                            result += digits1[i+1] * digits2[i+1];
                            result += digits1[i+2] * digits2[i+2];
                            result += digits1[i+3] * digits2[i+3];
                            result += digits1[i+4] * digits2[i+4];
                            result += digits1[i+5] * digits2[i+5];
                            result += digits1[i+6] * digits2[i+6];
                            result += digits1[i+7] * digits2[i+7];
                        }
    
                        reminderLimit = digits1.Length % 8;
                    }
    
                    switch(reminderLimit)
                    {
                        case 7: {
                                    result += digits1[limit] * digits2[limit];
                                    result += digits1[limit+1] * digits2[limit+1];
                                    result += digits1[limit+2] * digits2[limit+2];
                                    result += digits1[limit+3] * digits2[limit+3];
                                    result += digits1[limit+4] * digits2[limit+4];
                                    result += digits1[limit+5] * digits2[limit+5];
                                    result += digits1[limit+6] * digits2[limit+6];
                                    break;
                                }
    
                        case 6: {
                                    result += digits1[limit] * digits2[limit];
                                    result += digits1[limit+1] * digits2[limit+1];
                                    result += digits1[limit+2] * digits2[limit+2];
                                    result += digits1[limit+3] * digits2[limit+3];
                                    result += digits1[limit+4] * digits2[limit+4];
                                    result += digits1[limit+5] * digits2[limit+5];      
                                    break;
                                }
    
                        case 5: {
                                    result += digits1[limit] * digits2[limit];
                                    result += digits1[limit+1] * digits2[limit+1];
                                    result += digits1[limit+2] * digits2[limit+2];
                                    result += digits1[limit+3] * digits2[limit+3];
                                    result += digits1[limit+4] * digits2[limit+4];
                                    break;
                                }
    
                        case 4: {
                                    result += digits1[limit] * digits2[limit];
                                    result += digits1[limit+1] * digits2[limit+1];
                                    result += digits1[limit+2] * digits2[limit+2];
                                    result += digits1[limit+3] * digits2[limit+3];
                                    break;
                                }
    
                        case 3: {
                                    result += digits1[limit] * digits2[limit];
                                    result += digits1[limit+1] * digits2[limit+1];
                                    result += digits1[limit+2] * digits2[limit+2];
                                    break;
                                }
    
                        case 2: {
                                    result += digits1[limit] * digits2[limit];
                                    result += digits1[limit+1] * digits2[limit+1];
                                    break;
                                }
    
                        case 1: {
                                    result += digits1[limit] * digits2[limit];
                                    break;
                                }
                        default :
                                {
                                    break;
                                }
                    }
    
                    return result;
                });
    

    There is a huge difference is running time between debug and release mode of C# code, this is run with release mode:

    Regular Loop
    Iterations: 1000000
    Time(ms):   0/         0/       0 (       596)
    Ticks:      1/  2,071213/     455 (   2154248)
    
    Unroll 4x
    Iterations: 1000000
    Time(ms):   0/     2E-06/       1 (       575)
    Ticks:      1/  1,984301/    3876 (   2076105)
    
    Dynamic unroll
    Iterations: 1000000
    Time(ms):   0/         0/       0 (       430)
    Ticks:      1/    1,4635/    3228 (   1554830)
    

    Debug mode:

    Regular Loop
    Iterations: 1000000
    Time(ms):   0/     1E-06/       1 (      1296)
    Ticks:      4/  4,529916/    3907 (   4678354)
    
    Unroll 4x
    Iterations: 1000000
    Time(ms):   0/         0/       0 (       871)
    Ticks:      2/  3,048466/     701 (   3145277)
    
    Dynamic unroll
    Iterations: 1000000
    Time(ms):   0/         0/       0 (       819)
    Ticks:      2/  2,858588/    1398 (   2957179)
    
    0 讨论(0)
  • 2021-02-04 06:19

    I wrote a test bench to compare the these methods' times on my machine.

    Specs:
    Windows 7 Professional 64-bit
    Intel Core 2 Quad Q9550 @ 2.83GHz
    4x1GiB Corsair Dominator DDR2 1066 (PC2-8500)

    using System;
    using System.Linq;
    
    namespace Testbench
    {
        class Program
        {
            static void Main(string[] args)
            {
                var digits1 = Enumerable.Range(0, 500).ToArray();
                var digits2 = digits1.ToArray(); // create a copy
    
                Test("Regular Loop", () =>
                {
                    int result = 0;
                    for (int i = 0; i < digits1.Length; i++)
                    {
                        result += digits1[i] * digits2[i];
                    }
                    return result;
                });
    
                // using LINQ
                Test("Enumerable \"Loop\"", () => Enumerable.Range(0, digits1.Length).Sum(i => digits1[i] * digits2[i]));
                Test("Using Zip", () => digits1.Zip(digits2, (x, y) => x * y).Sum());
                Test("Using Indexed Select", () => digits1.Select((n, i) => n * digits2[i]).Sum());
                Test("Using Indexed Select with ElementAt", () => digits1.Select((n, i) => n * digits2.ElementAt(i)).Sum());
    
                // using PLINQ
                Test("Parallel Enumerable \"Loop\"", () => ParallelEnumerable.Range(0, digits1.Length).Sum(i => digits1[i] * digits2[i]));
                Test("Using Parallel Zip", () => digits1.AsParallel().Zip(digits2.AsParallel(), (x, y) => x * y).Sum());
                Test("Using Parallel Indexed Select", () => digits1.AsParallel().Select((n, i) => n * digits2[i]).Sum());
                Test("Using Parallel Indexed Select with ElementAt", () => digits1.AsParallel().Select((n, i) => n * digits2.ElementAt(i)).Sum());
    
                Console.Write("Press any key to continue . . . ");
                Console.ReadKey(true);
                Console.WriteLine();
            }
    
            static void Test<T>(string testName, Func<T> test, int iterations = 1000000)
            {
                Console.WriteLine(testName);
                Console.WriteLine("Iterations: {0}", iterations);
                var results = Enumerable.Repeat(0, iterations).Select(i => new System.Diagnostics.Stopwatch()).ToList();
                var timer = System.Diagnostics.Stopwatch.StartNew();
                for (int i = 0; i < results.Count; i++)
                {
                    results[i].Start();
                    test();
                    results[i].Stop();
                }
                timer.Stop();
                Console.WriteLine("Time(ms): {0,3}/{1,10}/{2,8} ({3,10})", results.Min(t => t.ElapsedMilliseconds), results.Average(t => t.ElapsedMilliseconds), results.Max(t => t.ElapsedMilliseconds), timer.ElapsedMilliseconds);
                Console.WriteLine("Ticks:    {0,3}/{1,10}/{2,8} ({3,10})", results.Min(t => t.ElapsedTicks), results.Average(t => t.ElapsedTicks), results.Max(t => t.ElapsedTicks), timer.ElapsedTicks);
                Console.WriteLine();
            }
        }
    }
    

    32-bit target:

    Regular Loop
    Iterations: 1000000
    Time(ms):   0/         0/       0 (      1172)
    Ticks:      3/  3.101365/     526 (   3244251)
    
    Enumerable "Loop"
    Iterations: 1000000
    Time(ms):   0/   4.3E-05/      25 (      9054)
    Ticks:     24/  24.93989/   69441 (  25052172)
    
    Using Zip
    Iterations: 1000000
    Time(ms):   0/   2.4E-05/      16 (     16282)
    Ticks:     41/ 44.941406/   45395 (  45052491)
    
    Using Indexed Select
    Iterations: 1000000
    Time(ms):   0/   5.3E-05/      32 (     13473)
    Ticks:     34/ 37.165088/   89602 (  37280177)
    
    Using Indexed Select with ElementAt
    Iterations: 1000000
    Time(ms):   0/   1.5E-05/       6 (    160215)
    Ticks:    405/443.154147/   17821 ( 443306156)
    
    Parallel Enumerable "Loop"
    Iterations: 1000000
    Time(ms):   0/  0.000103/      29 (     17194)
    Ticks:     38/ 47.412312/   81906 (  47576133)
    
    Using Parallel Zip
    Iterations: 1000000
    Time(ms):   0/   9.4E-05/      19 (     21703)
    Ticks:     49/ 59.859005/   53200 (  60051081)
    
    Using Parallel Indexed Select
    Iterations: 1000000
    Time(ms):   0/  0.000114/      27 (     20579)
    Ticks:     45/ 56.758491/   75455 (  56943627)
    
    Using Parallel Indexed Select with ElementAt
    Iterations: 1000000
    Time(ms):   0/   8.1E-05/      19 (     61137)
    Ticks:    144/ 168.97909/   53320 ( 169165086)
    

    64-bit target:

    Regular Loop
    Iterations: 1000000
    Time(ms):   0/         0/       0 (       506)
    Ticks:      1/  1.254137/    1491 (   1401969)
    
    Enumerable "Loop"
    Iterations: 1000000
    Time(ms):   0/   2.9E-05/      15 (     10118)
    Ticks:     27/ 27.850086/   41954 (  27995994)
    
    Using Zip
    Iterations: 1000000
    Time(ms):   0/   2.2E-05/      13 (     17089)
    Ticks:     45/ 47.132834/   38506 (  47284608)
    
    Using Indexed Select
    Iterations: 1000000
    Time(ms):   0/   3.1E-05/      12 (     14057)
    Ticks:     37/ 38.740923/   33846 (  38897274)
    
    Using Indexed Select with ElementAt
    Iterations: 1000000
    Time(ms):   0/   3.8E-05/      29 (    117412)
    Ticks:    304/324.711279/   82726 ( 324872753)
    
    Parallel Enumerable "Loop"
    Iterations: 1000000
    Time(ms):   0/   9.9E-05/      28 (     24234)
    Ticks:     38/  66.79389/   77578 (  67054956)
    
    Using Parallel Zip
    Iterations: 1000000
    Time(ms):   0/  0.000111/      24 (     30193)
    Ticks:     46/ 83.264037/   69029 (  83542711)
    
    Using Parallel Indexed Select
    Iterations: 1000000
    Time(ms):   0/   6.5E-05/      20 (     28417)
    Ticks:     45/ 78.337831/   56354 (  78628396)
    
    Using Parallel Indexed Select with ElementAt
    Iterations: 1000000
    Time(ms):   0/   9.2E-05/      16 (     65233)
    Ticks:    112/180.154663/   44799 ( 180496754)
    
    0 讨论(0)
  • 2021-02-04 06:20
    int result = 0;
    for(int i = 0; i < digits1.length; i++)
    {
        result += digits1[i] * digits2[i];
    }
    
    0 讨论(0)
  • 2021-02-04 06:26

    Very simply, do a loop.

    int sum = 0;
    for(int i = 0; i < digits1.length && i < digits2.length; i++)
    {
        sum += digits1[i] * digits2[i];
    }
    

    Boom.

    0 讨论(0)
  • 2021-02-04 06:34

    With LINQ:

    int dotProduct = digits1.Zip(digits2, (d1, d2) => d1 * d2)
                            .Sum();
    

    Zipwill produce a streaming sequence containing the products of corresponding elements from both arrays, which is then summed into an integer with Sum.

    Note that this will not fail like it should when the arrays of unequal length, so you probably need to validate the input:

    //null checks here
    
    if(digits1.Length != digits2.Length)
       throw new ArgumentException("...");
    

    EDIT: As Jeff M points out,Enumerable.Zipwas only added to the framework in .NET 4.0. In .NET 3.5, you can do this (the idea is only efficient for collections that expose fast indexers):

    int dotProduct = Enumerable.Range(0, digits1.Length)
                               .Sum(i => digits1[i] * digits2[i]);
    
    //from Jeff M's comment:
    int dotProduct = digits1.Select((n, i) => n * digits2[i])
                            .Sum();
    
    0 讨论(0)
提交回复
热议问题