python: plotting a histogram with a function line on top

后端 未结 3 1530
情书的邮戳
情书的邮戳 2021-02-04 04:35

I\'m trying to do a little bit of distribution plotting and fitting in Python using SciPy for stats and matplotlib for the plotting. I\'m having good luck with some things like

相关标签:
3条回答
  • 2021-02-04 05:07

    One could be interested in plotting the distibution function of any histogram. This can be done using seaborn kde function

    import numpy as np # for random data
    import pandas as pd  # for convinience
    import matplotlib.pyplot as plt  # for graphics
    import seaborn as sns  # for nicer graphics
    
    v1 = pd.Series(np.random.normal(0,10,1000), name='v1')
    v2 = pd.Series(2*v1 + np.random.normal(60,15,1000), name='v2')
    
    # plot a kernel density estimation over a stacked barchart
    plt.figure()
    plt.hist([v1, v2], histtype='barstacked', normed=True);
    v3 = np.concatenate((v1,v2))
    sns.kdeplot(v3);
    plt.show()
    

    from a coursera course on data visualization with python

    0 讨论(0)
  • 2021-02-04 05:18

    Expanding on Malik's answer, and trying to stick with vanilla NumPy, SciPy and Matplotlib. I've pulled in Seaborn, but it's only used to provide nicer defaults and small visual tweaks:

    import numpy as np
    import scipy.stats as sps
    import matplotlib.pyplot as plt
    
    import seaborn as sns
    sns.set(style='ticks')
    
    # parameterise our distributions
    d1 = sps.norm(0, 10)
    d2 = sps.norm(60, 15)
    
    # sample values from above distributions
    y1 = d1.rvs(300)
    y2 = d2.rvs(200)
    # combine mixture
    ys = np.concatenate([y1, y2])
    
    # create new figure with size given explicitly
    plt.figure(figsize=(10, 6))
    
    # add histogram showing individual components
    plt.hist([y1, y2], 31, histtype='barstacked', density=True, alpha=0.4, edgecolor='none')
    
    # get X limits and fix them
    mn, mx = plt.xlim()
    plt.xlim(mn, mx)
    
    # add our distributions to figure
    x = np.linspace(mn, mx, 301)
    plt.plot(x, d1.pdf(x) * (len(y1) / len(ys)), color='C0', ls='--', label='d1')
    plt.plot(x, d2.pdf(x) * (len(y2) / len(ys)), color='C1', ls='--', label='d2')
    
    # estimate Kernel Density and plot
    kde = sps.gaussian_kde(ys)
    plt.plot(x, kde.pdf(x), label='KDE')
    
    # finish up
    plt.legend()
    plt.ylabel('Probability density')
    sns.despine()
    

    gives us the following plot:

    I've tried to stick with a minimal feature set while producing relatively nice output, notably using SciPy to estimate the KDE is very easy.

    0 讨论(0)
  • 2021-02-04 05:32

    just put both pieces together.

    import scipy.stats as ss
    import numpy as np
    import matplotlib.pyplot as plt
    alpha, loc, beta=5, 100, 22
    data=ss.gamma.rvs(alpha,loc=loc,scale=beta,size=5000)
    myHist = plt.hist(data, 100, normed=True)
    rv = ss.gamma(alpha,loc,beta)
    x = np.linspace(0,600) 
    h = plt.plot(x, rv.pdf(x), lw=2)
    plt.show()
    

    enter image description here

    to make sure you get what you want in any specific plot instance, try to create a figure object first

    import scipy.stats as ss
    import numpy as np
    import matplotlib.pyplot as plt
    # setting up the axes
    fig = plt.figure(figsize=(8,8))
    ax  = fig.add_subplot(111)
    # now plot
    alpha, loc, beta=5, 100, 22
    data=ss.gamma.rvs(alpha,loc=loc,scale=beta,size=5000)
    myHist = ax.hist(data, 100, normed=True)
    rv = ss.gamma(alpha,loc,beta)
    x = np.linspace(0,600)
    h = ax.plot(x, rv.pdf(x), lw=2)
    # show
    plt.show()
    
    0 讨论(0)
提交回复
热议问题