I want to raise a 2-dimensional numpy array
, let\'s call it A
, to the power of some number n
, but I have thus far failed to find the funct
I believe you want numpy.linalg.matrix_power
As a quick example:
import numpy as np
x = np.arange(9).reshape(3,3)
y = np.matrix(x)
a = y**3
b = np.linalg.matrix_power(x, 3)
print a
print b
assert np.all(a==b)
This yields:
In [19]: a
Out[19]:
matrix([[ 180, 234, 288],
[ 558, 720, 882],
[ 936, 1206, 1476]])
In [20]: b
Out[20]:
array([[ 180, 234, 288],
[ 558, 720, 882],
[ 936, 1206, 1476]])
The opencv function cvPow seems to be about 3-4 times faster on my computer when raising to a rational number. Here is a sample function (you need to have the pyopencv module installed):
import pyopencv as pycv
import numpy
def pycv_power(arr, exponent):
"""Raise the elements of a floating point matrix to a power.
It is 3-4 times faster than numpy's built-in power function/operator."""
if arr.dtype not in [numpy.float32, numpy.float64]:
arr = arr.astype('f')
res = numpy.empty_like(arr)
if arr.flags['C_CONTIGUOUS'] == False:
arr = numpy.ascontiguousarray(arr)
pycv.pow(pycv.asMat(arr), float(exponent), pycv.asMat(res))
return res