So my dataframe is made from lots of individual excel files, each with the the date as their file name and the prices of the fruits on that day in the spreadsheet, so the spread
Something like this could work: loop over the dictionary, add the constant column with the dictionary key, concatenate and then set the date as index
pd.concat(
(i_value_df.assign(date=i_key) for i_key, i_value_df in d.items())
).set_index('date')
You can try first set_index of all dataframes in comprehension
and then use concat with remove last level of multiindex
in columns:
print d
{'17012016': Fruit Price
0 Orange 7
1 Apple 8
2 Pear 9, '16012016': Fruit Price
0 Orange 4
1 Apple 5
2 Pear 6, '15012016': Fruit Price
0 Orange 1
1 Apple 2
2 Pear 3}
d = { k: v.set_index('Fruit') for k, v in d.items()}
df = pd.concat(d, axis=1)
df.columns = df.columns.droplevel(-1)
print df
15012016 16012016 17012016
Fruit
Orange 1 4 7
Apple 2 5 8
Pear 3 6 9
Solution:
pd.concat(d, axis=1).sum(axis=1, level=0)
Explanation:
After .concat(d, axis=1)
you will get
15012016 16012016 17012016
Price Price Price
Fruit
Orange 1 4 7
Apple 2 5 8
Pear 3 6 9
And adding .sum(axis=1, level=0)
transforms it to
15012016 16012016 17012016
Fruit
Orange 1 4 7
Apple 2 5 8
Pear 3 6 9