Plotting of 1-dimensional Gaussian distribution function

后端 未结 5 434
忘掉有多难
忘掉有多难 2021-02-04 01:09

How do I make plots of a 1-dimensional Gaussian distribution function using the mean and standard deviation parameter values (μ, σ) = (−1, 1), (0, 2), and (2, 3)?

I\'m n

相关标签:
5条回答
  • 2021-02-04 01:28

    You are missing a parantheses in the denominator of your gaussian() function. As it is right now you divide by 2 and multiply with the variance (sig^2). But that is not true and as you can see of your plots the greater variance the more narrow the gaussian is - which is wrong, it should be opposit.

    So just change the gaussian() function to:

    def gaussian(x, mu, sig):
        return np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.)))
    
    0 讨论(0)
  • 2021-02-04 01:31

    In addition to previous answers, I recommend to first calculate the ratio in the exponent, then taking the square:

    def gaussian(x,x0,sigma):
      return np.exp(-np.power((x - x0)/sigma, 2.)/2.)
    

    That way, you can also calculate the gaussian of very small or very large numbers:

    In: gaussian(1e-12,5e-12,3e-12)
    Out: 0.64118038842995462
    
    0 讨论(0)
  • 2021-02-04 01:35

    With the excellent matplotlib and numpy packages

    from matplotlib import pyplot as mp
    import numpy as np
    
    def gaussian(x, mu, sig):
        return np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.)))
    
    x_values = np.linspace(-3, 3, 120)
    for mu, sig in [(-1, 1), (0, 2), (2, 3)]:
        mp.plot(x_values, gaussian(x_values, mu, sig))
    
    mp.show()
    

    will produce something like

    0 讨论(0)
  • 2021-02-04 01:49

    The correct form, based on the original syntax, and correctly normalized is:

    def gaussian(x, mu, sig):
        return 1./(np.sqrt(2.*np.pi)*sig)*np.exp(-np.power((x - mu)/sig, 2.)/2)
    
    0 讨论(0)
  • 2021-02-04 01:53

    you can read this tutorial for how to use functions of statistical distributions in python. http://docs.scipy.org/doc/scipy/reference/tutorial/stats.html

    from scipy.stats import norm
    import matplotlib.pyplot as plt
    import numpy as np 
    
    #initialize a normal distribution with frozen in mean=-1, std. dev.= 1
    rv = norm(loc = -1., scale = 1.0)
    rv1 = norm(loc = 0., scale = 2.0)
    rv2 = norm(loc = 2., scale = 3.0)
    
    x = np.arange(-10, 10, .1)
    
    #plot the pdfs of these normal distributions 
    plt.plot(x, rv.pdf(x), x, rv1.pdf(x), x, rv2.pdf(x))
    
    0 讨论(0)
提交回复
热议问题