My question is in the code:
template
struct TupleOfVectors {
std::tuple...> tuple;
void do_something_t
Here's one approach which may work well in your case:
template<typename... Ts>
struct TupleOfVectors {
std::tuple<std::vector<Ts>...> tuple;
void do_something_to_each_vec()
{
// First template parameter is just a dummy.
do_something_to_each_vec_helper<0,Ts...>();
}
template<size_t N>
void do_something_to_vec()
{
auto &vec = std::get<N>(tuple);
//do something to vec
}
private:
// Anchor for the recursion
template <int>
void do_something_to_each_vec_helper() { }
// Execute the function for each template argument.
template <int,typename Arg,typename...Args>
void do_something_to_each_vec_helper()
{
do_something_to_each_vec_helper<0,Args...>();
do_something_to_vec<sizeof...(Args)>();
}
};
The only thing that is a bit messy here is the extra dummy int
template parameter to do_something_to_each_vec_helper
. It is necessary to make the do_something_to_each_vec_helper still be a template when no arguments remain. If you had another template parameter you wanted to use, you could use it there instead.
If you are not particularly wedded to a solution in the form of generic "for each" function template then you can use one like this:
#ifndef TUPLE_OF_VECTORS_H
#define TUPLE_OF_VECTORS_H
#include <vector>
#include <tuple>
#include <iostream>
template<typename... Ts>
struct TupleOfVectors
{
std::tuple<std::vector<Ts>...> tuple;
template<typename ...Args>
TupleOfVectors(Args... args)
: tuple(args...){}
void do_something_to_each_vec() {
do_something_to_vec(tuple);
}
template<size_t I = 0, class ...P>
typename std::enable_if<I == sizeof...(P)>::type
do_something_to_vec(std::tuple<P...> &) {}
template<size_t I = 0, class ...P>
typename std::enable_if<I < sizeof...(P)>::type
do_something_to_vec(std::tuple<P...> & parts) {
auto & part = std::get<I>(tuple);
// Doing something...
std::cout << "vector[" << I << "][0] = " << part[0] << std::endl;
do_something_to_vec<I + 1>(parts);
}
};
#endif // EOF
A test program, built with GCC 4.7.2 and clang 3.2:
#include "tuple_of_vectors.h"
using namespace std;
int main()
{
TupleOfVectors<int,int,int,int> vecs(vector<int>(1,1),
vector<int>(2,2),
vector<int>(3,3),
vector<int>(4,4));
vecs.do_something_to_each_vec();
return 0;
}
The same style of recursion can be used in a generic "for_each" function template without auxiliary indices apparatus:
#ifndef FOR_EACH_IN_TUPLE_H
#define FOR_EACH_IN_TUPLE_H
#include <type_traits>
#include <tuple>
#include <cstddef>
template<size_t I = 0, typename Func, typename ...Ts>
typename std::enable_if<I == sizeof...(Ts)>::type
for_each_in_tuple(std::tuple<Ts...> &, Func) {}
template<size_t I = 0, typename Func, typename ...Ts>
typename std::enable_if<I < sizeof...(Ts)>::type
for_each_in_tuple(std::tuple<Ts...> & tpl, Func func)
{
func(std::get<I>(tpl));
for_each_in_tuple<I + 1>(tpl,func);
}
#endif //EOF
And a test program for that:
#include "for_each_in_tuple.h"
#include <iostream>
struct functor
{
template<typename T>
void operator () (T&& t)
{
std::cout << t << std::endl;
}
};
int main()
{
auto tpl = std::make_tuple(1,2.0,"Three");
for_each_in_tuple(tpl,functor());
return 0;
}
I was testing with tuples and metaprograming and found the current thread. I think my work can inspire someone else although I like the solution of @Andy.
Anyway, just get fun!
#include <tuple>
#include <type_traits>
#include <iostream>
#include <sstream>
#include <functional>
template<std::size_t I = 0, typename Tuple, typename Func>
typename std::enable_if< I != std::tuple_size<Tuple>::value, void >::type
for_each(const Tuple& tuple, Func&& func)
{
func(std::get<I>(tuple));
for_each<I + 1>(tuple, func);
}
template<std::size_t I = 0, typename Tuple, typename Func>
typename std::enable_if< I == std::tuple_size<Tuple>::value, void >::type
for_each(const Tuple& tuple, Func&& func)
{
// do nothing
}
struct print
{
template<typename T>
void operator () (T&& t)
{
std::cout << t << std::endl;
}
};
template<typename... Params>
void test(Params&& ... params)
{
int sz = sizeof...(params);
std::tuple<Params...> values(std::forward<Params>(params)...);
for_each(values, print() );
}
class MyClass
{
public:
MyClass(const std::string& text)
: m_text(text)
{
}
friend std::ostream& operator <<(std::ostream& stream, const MyClass& myClass)
{
stream << myClass.m_text;
return stream;
}
private:
std::string m_text;
};
int main()
{
test(1, "hello", 3.f, 4, MyClass("I don't care") );
}
You can quite easily do that with some indices machinery. Given a meta-function gen_seq
for generating compile-time integer sequences (encapsulated by the seq
class template):
namespace detail
{
template<int... Is>
struct seq { };
template<int N, int... Is>
struct gen_seq : gen_seq<N - 1, N - 1, Is...> { };
template<int... Is>
struct gen_seq<0, Is...> : seq<Is...> { };
}
And the following function templates:
#include <tuple>
namespace detail
{
template<typename T, typename F, int... Is>
void for_each(T&& t, F f, seq<Is...>)
{
auto l = { (f(std::get<Is>(t)), 0)... };
}
}
template<typename... Ts, typename F>
void for_each_in_tuple(std::tuple<Ts...> const& t, F f)
{
detail::for_each(t, f, detail::gen_seq<sizeof...(Ts)>());
}
You can use the for_each_in_tuple
function above this way:
#include <string>
#include <iostream>
struct my_functor
{
template<typename T>
void operator () (T&& t)
{
std::cout << t << std::endl;
}
};
int main()
{
std::tuple<int, double, std::string> t(42, 3.14, "Hello World!");
for_each_in_tuple(t, my_functor());
}
Here is a live example.
In your concrete situation, this is how you could use it:
template<typename... Ts>
struct TupleOfVectors
{
std::tuple<std::vector<Ts>...> t;
void do_something_to_each_vec()
{
for_each_in_tuple(t, tuple_vector_functor());
}
struct tuple_vector_functor
{
template<typename T>
void operator () (T const &v)
{
// Do something on the argument vector...
}
};
};
And once again, here is a live example.
If you're using C++14 or later, you can replace the seq
and gen_seq
classes above with std::integer_sequence like so:
namespace detail
{
template<typename T, typename F, int... Is>
void
for_each(T&& t, F f, std::integer_sequence<int, Is...>)
{
auto l = { (f(std::get<Is>(t)), 0)... };
}
} // namespace detail
template<typename... Ts, typename F>
void
for_each_in_tuple(std::tuple<Ts...> const& t, F f)
{
detail::for_each(t, f, std::make_integer_sequence<int, sizeof...(Ts)>());
}
If you're using C++17 or later you can do this (from this comment below):
std::apply([](auto ...x){std::make_tuple(some_function(x)...);} , the_tuple);
In C++17 you can do this:
std::apply([](auto ...x){std::make_tuple(some_function(x)...);} , the_tuple);
given that some_function
has suitable overloads for all the types in the tuple.
This already works in Clang++ 3.9, using std::experimental::apply
.
In addition to the answer of @M. Alaggan, if you need to call a function on tuple elements in order of their appearance† in the tuple, in C++17 you can also use a fold expression like this:
std::apply([](auto& ...x){(..., some_function(x));}, the_tuple);
(live example).
†Because otherwise order of evaluation of function arguments is unspecified.