How do I Pass a List of Series to a Pandas DataFrame?

后端 未结 6 2010
栀梦
栀梦 2021-02-03 23:57

I realize Dataframe takes a map of {\'series_name\':Series(data, index)}. However, it automatically sorts that map even if the map is an OrderedDict().

Is there a simpl

相关标签:
6条回答
  • 2021-02-04 00:38

    Build the list of series:

    import pandas as pd
    import numpy as np
    
    > series = [pd.Series(np.random.rand(3), name=c) for c in list('abcdefg')]
    

    First method pd.DataFrame.from_items:

    > pd.DataFrame.from_items([(s.name, s) for s in series])
              a         b         c         d         e         f         g
    0  0.071094  0.077545  0.299540  0.377555  0.751840  0.879995  0.933399
    1  0.538251  0.066780  0.415607  0.796059  0.718893  0.679950  0.502138
    2  0.096001  0.680868  0.883778  0.210488  0.642578  0.023881  0.250317
    

    Second method pd.concat:

    > pd.concat(series, axis=1)
              a         b         c         d         e         f         g
    0  0.071094  0.077545  0.299540  0.377555  0.751840  0.879995  0.933399
    1  0.538251  0.066780  0.415607  0.796059  0.718893  0.679950  0.502138
    2  0.096001  0.680868  0.883778  0.210488  0.642578  0.023881  0.250317
    
    0 讨论(0)
  • 2021-02-04 00:45

    You could use pandas.concat:

    import pandas as pd
    from pandas.util.testing import rands
    
    data = [pd.Series([rands(4) for j in range(6)],
                      index=pd.date_range('1/1/2000', periods=6),
                      name='col'+str(i)) for i in range(4)]
    
    df = pd.concat(data, axis=1, keys=[s.name for s in data])
    print(df)
    

    yields

                col0  col1  col2  col3
    2000-01-01  GqcN  Lwlj  Km7b  XfaA
    2000-01-02  lhNC  nlSm  jCYu  XLVb
    2000-01-03  sSRz  PFby  C1o5  0BJe
    2000-01-04  khZb  Ny9p  crUY  LNmc
    2000-01-05  hmLp  4rVp  xF2P  OmD9
    2000-01-06  giah  psQb  T5RJ  oLSh
    
    0 讨论(0)
  • 2021-02-04 00:49
    a = pd.Series(data=[1,2,3])
    b = pd.Series(data=[4,5,6])
    a.name = 'a'
    b.name= 'b'
    
    pd.DataFrame(zip(a,b), columns=[a.name, b.name])
    

    or just concat dataframes

    pd.concat([pd.DataFrame(a),pd.DataFrame(b)], axis=1)
    
    In [53]: %timeit pd.DataFrame(zip(a,b), columns=[a.name, b.name])
    1000 loops, best of 3: 362 us per loop
    
    In [54]: %timeit pd.concat([pd.DataFrame(a),pd.DataFrame(b)], axis=1)
    1000 loops, best of 3: 808 us per loop
    
    0 讨论(0)
  • 2021-02-04 00:52

    Simply passing the list of Series to DataFrame then transposing seems to work too. It will also fill in any indices that are missing from one or the other Series.

    import pandas as pd
    from pandas.util.testing import rands
    data = [pd.Series([rands(4) for j in range(6)],
                      index=pd.date_range('1/1/2000', periods=6),
                      name='col'+str(i)) for i in range(4)]
    df = pd.DataFrame(data).T
    print(df)
    
    0 讨论(0)
  • 2021-02-04 01:00

    Check out DataFrame.from_items too

    0 讨论(0)
  • 2021-02-04 01:00

    You can first create an empty DataFrame and then use append() to it.

    df = pd.DataFrame()
    

    then:

    df = df.append(list_series)
    

    I also like to make sure the previous script that created list_series won't mess my dataframe up:

    df.drop_duplicates(inplace=True)
    
    0 讨论(0)
提交回复
热议问题