I grouped my dataframe by the two columns below
df = pd.DataFrame({\'a\': [1, 1, 3],
\'b\': [4.0, 5.5, 6.0],
\'c\': [7L, 8L
Set as_index = False
during groupby
df = pandas.DataFrame({"a":[1,1,3], "b":[4,5.5,6], "c":[7,8,9], "name":["hello","hello","foo"]})
df.groupby(["a", "name"] , as_index = False).median()
You need to get the index values, they are not columns. In this case level 1
df.groupby(["a", "name"]).median().index.get_level_values(1)
Out[2]:
Index([u'hello', u'foo'], dtype=object)
You can also pass the index name
df.groupby(["a", "name"]).median().index.get_level_values('name')
as this will be more intuitive than passing integer values.
You can convert the index values to a list by calling tolist()
df.groupby(["a", "name"]).median().index.get_level_values(1).tolist()
Out[5]:
['hello', 'foo']
Using reset_index() after the group by will do the trick:
df = pd.DataFrame({'a': [1, 1, 3],
'b': [4.0, 5.5, 6.0],
'c': ['7L', '8L', '9L'],
'name': ['hello', 'hello', 'foo']})
df.groupby(['a', 'name']).median().reset_index().name
here is the result:
0 hello
1 foo
Name: name, dtype: object
and if you want the list of the values, you can simply:
df = pd.DataFrame({'a': [1, 1, 3],
'b': [4.0, 5.5, 6.0],
'c': ['7L', '8L', '9L'],
'name': ['hello', 'hello', 'foo']})
df.groupby(['a', 'name']).median().reset_index().name.values
The result of using values will be a list containing the values for the name column. The code above returns the following list as the results:
array(['hello', 'foo'], dtype=object)
You can also reset_index()
on your groupby result to get back a dataframe with the name column now accessible.
import pandas as pd
df = pd.DataFrame({"a":[1,1,3], "b":[4,5.5,6], "c":[7,8,9], "name":["hello","hello","foo"]})
df_grouped = df.groupby(["a", "name"]).median().reset_index()
df_grouped.name
0 hello
1 foo
Name: name, dtype: object
If you perform an operation on a single column the return will be a series with multiindex and you can simply apply pd.DataFrame
to it and then reset_index.