How to select columns from groupby object in pandas?

前端 未结 4 1965
甜味超标
甜味超标 2021-02-04 00:01

I grouped my dataframe by the two columns below

df = pd.DataFrame({\'a\': [1, 1, 3],
                   \'b\': [4.0, 5.5, 6.0],
                   \'c\': [7L, 8L         


        
相关标签:
4条回答
  • 2021-02-04 00:03

    Set as_index = False during groupby

    df = pandas.DataFrame({"a":[1,1,3], "b":[4,5.5,6], "c":[7,8,9], "name":["hello","hello","foo"]})
    df.groupby(["a", "name"] , as_index = False).median()
    
    0 讨论(0)
  • You need to get the index values, they are not columns. In this case level 1

    df.groupby(["a", "name"]).median().index.get_level_values(1)
    
    Out[2]:
    
    Index([u'hello', u'foo'], dtype=object)
    

    You can also pass the index name

    df.groupby(["a", "name"]).median().index.get_level_values('name')
    

    as this will be more intuitive than passing integer values.

    You can convert the index values to a list by calling tolist()

    df.groupby(["a", "name"]).median().index.get_level_values(1).tolist()
    
    Out[5]:
    
    ['hello', 'foo']
    
    0 讨论(0)
  • 2021-02-04 00:20

    Using reset_index() after the group by will do the trick:

    df = pd.DataFrame({'a': [1, 1, 3],
                       'b': [4.0, 5.5, 6.0],
                       'c': ['7L', '8L', '9L'],
                       'name': ['hello', 'hello', 'foo']})
    df.groupby(['a', 'name']).median().reset_index().name
    

    here is the result:

     0    hello
     1      foo
     Name: name, dtype: object
    

    and if you want the list of the values, you can simply:

    df = pd.DataFrame({'a': [1, 1, 3],
                       'b': [4.0, 5.5, 6.0],
                       'c': ['7L', '8L', '9L'],
                       'name': ['hello', 'hello', 'foo']})
    
    df.groupby(['a', 'name']).median().reset_index().name.values
    

    The result of using values will be a list containing the values for the name column. The code above returns the following list as the results:

    array(['hello', 'foo'], dtype=object)
    
    0 讨论(0)
  • 2021-02-04 00:22

    You can also reset_index() on your groupby result to get back a dataframe with the name column now accessible.

    import pandas as pd
    df = pd.DataFrame({"a":[1,1,3], "b":[4,5.5,6], "c":[7,8,9], "name":["hello","hello","foo"]})
    df_grouped = df.groupby(["a", "name"]).median().reset_index()
    df_grouped.name
     0    hello
     1      foo
     Name: name, dtype: object
    

    If you perform an operation on a single column the return will be a series with multiindex and you can simply apply pd.DataFrame to it and then reset_index.

    0 讨论(0)
提交回复
热议问题