how to plot networks over a map with the least overlap

后端 未结 2 1914
广开言路
广开言路 2021-02-03 23:19

I have some authors with their city or country of affiliation. I would like to know if it is possible to plot the coauthors\' networks (figure 1), on the map, having the coordin

相关标签:
2条回答
  • 2021-02-03 23:57

    As an effort to avoid the overlapping of the 2 networks, I came to this modification of the x and y coordenates of the ggplot, which by default does not overlap the networks, see figure 1 in the question.

    # get centroid positions for countries
    # add coordenates to authorcountry table
    
    # download and unzip
    # https://worldmap.harvard.edu/data/geonode:country_centroids_az8
    setwd("~/country_centroids_az8")
    library(rgdal)
    cent <- readOGR('.', "country_centroids_az8", stringsAsFactors = F)
    countrycentdf<-cent@data[,c("name","Longitude","Latitude")]
    countrycentdf$name[which(countrycentdf$name=="United States")]<-"USA"
    colnames(countrycentdf)[names(countrycentdf)=="name"]<-"country"
    
    authorcountry$Longitude<-countrycentdf$Longitude[match(authorcountry$country,countrycentdf$country)]
    authorcountry$Latitude <-countrycentdf$Latitude [match(authorcountry$country,countrycentdf$country)]
    
    # original coordenates of plot and its transformation
    ggnetbuild<-ggplot_build(gdata)
    allcoord<-ggnetbuild$data[[3]][,c("x","y","label")]
    allcoord$Latitude<-authorcountry$Latitude [match(allcoord$label,authorcountry$author)]
    allcoord$Longitude<-authorcountry$Longitude [match(allcoord$label,authorcountry$author)]
    allcoord$country<-authorcountry$country [match(allcoord$label,authorcountry$author)]
    
    # increase with factor the distance among dots
    factor<-7
    allcoord$coord_lat<-allcoord$y*factor+allcoord$Latitude
    allcoord$coord_lon<-allcoord$x*factor+allcoord$Longitude
    allcoord$author<-allcoord$label
    
    # plot as in answer of JanLauGe, without jitter
    library(tidyverse)
    library(ggrepel)
      authors <- 
        # Get author numbers
        data_frame(
          id = seq(1, nrow(coauthors)),
          author = sapply(bip$val, function(x) x$vertex.names)) %>%
        left_join(
          allcoord,
          by = 'author') 
    
      # Continue as in answer of JanLauGe
      networkdata <- ## 
      dt <- ## 
      world_map <- map_data('world') 
      myMap <- ## 
      myMap
    

    0 讨论(0)
  • 2021-02-04 00:21

    Are you looking for a solution using exactly the packages you used, or would you be happy to use suite of other packages? Below is my approach, in which I extract the graph properties from the network object and plot them on a map using the ggplot2 and map package.


    First I recreate the example data you gave.

    library(tidyverse)
    library(sna)
    library(maps)
    library(ggrepel)
    set.seed(1)
    
    coauthors <- matrix(
      c(0,3,1,1,3,0,1,0,1,1,0,0,1,0,0,0),
      nrow = 4, ncol = 4, 
      dimnames = list(c('BENNETT MD', 'LEITCH IJ', 'HANSON L', 'SOMEONE ELSE'),
                      c('BENNETT MD', 'LEITCH IJ', 'HANSON L', 'SOMEONE ELSE')))
    
    coords <- data_frame(
      country = c('Argentina', 'Brazil', 'USA'),
      coord_lon = c(-63.61667, -51.92528, -95.71289),
      coord_lat = c(-38.41610, -14.23500, 37.09024))
    
    authorcountry <- data_frame(
      author = c('LEITCH IJ', 'HANSON L', 'BENNETT MD', 'SOMEONE ELSE'),
      country = c('Argentina', 'USA', 'Brazil', 'Brazil'))
    

    Now I generate the graph object using the snp function network

    # Generate network
    bip <- network(coauthors,
                   matrix.type = "adjacency",
                   ignore.eval = FALSE,
                   names.eval = "weights")
    
    # Graph with ggnet2 for centrality
    gdata <- ggnet2(bip, color = "Country", legend.position = "right",label = TRUE,  
                   alpha = 0.9, label.size = 3, edge.size="weights", 
                   size="degree", size.legend="Degree Centrality") + theme(legend.box = "horizontal")
    

    From the network object we can extract the values of each edge, and from the ggnet2 object we can get degree of centrality for nodes as below:

    # Combine data
    authors <- 
      # Get author numbers
      data_frame(
        id = seq(1, nrow(coauthors)),
        author = sapply(bip$val, function(x) x$vertex.names)) %>%
      left_join(
        authorcountry,
        by = 'author') %>%
      left_join(
        coords,
        by = 'country') %>%
      # Jittering points to avoid overlap between two authors
      mutate(
        coord_lon = jitter(coord_lon, factor = 1),
        coord_lat = jitter(coord_lat, factor = 1))
    
    # Get edges from network
    networkdata <- sapply(bip$mel, function(x) 
      c('id_inl' = x$inl, 'id_outl' = x$outl, 'weight' = x$atl$weights)) %>%
      t %>% as_data_frame
    
    dt <- networkdata %>%
      left_join(authors, by = c('id_inl' = 'id')) %>%
      left_join(authors, by = c('id_outl' = 'id'), suffix = c('.from', '.to')) %>%
      left_join(gdata$data %>% select(label, size), by = c('author.from' = 'label')) %>%
      mutate(edge_id = seq(1, nrow(.)),
             from_author = author.from,
             from_coord_lon = coord_lon.from,
             from_coord_lat = coord_lat.from,
             from_country = country.from,
             from_size = size,
             to_author = author.to,
             to_coord_lon = coord_lon.to,
             to_coord_lat = coord_lat.to,
             to_country = country.to) %>%
      select(edge_id, starts_with('from'), starts_with('to'), weight)
    

    Should look like this now:

    dt
    # A tibble: 8 × 11
      edge_id  from_author from_coord_lon from_coord_lat from_country from_size    to_author to_coord_lon
        <int>        <chr>          <dbl>          <dbl>        <chr>     <dbl>        <chr>        <dbl>
    1       1   BENNETT MD      -51.12756     -16.992729       Brazil         6    LEITCH IJ    -65.02949
    2       2   BENNETT MD      -51.12756     -16.992729       Brazil         6     HANSON L    -96.37907
    3       3   BENNETT MD      -51.12756     -16.992729       Brazil         6 SOMEONE ELSE    -52.54160
    4       4    LEITCH IJ      -65.02949     -35.214117    Argentina         4   BENNETT MD    -51.12756
    5       5    LEITCH IJ      -65.02949     -35.214117    Argentina         4     HANSON L    -96.37907
    6       6     HANSON L      -96.37907      36.252312          USA         4   BENNETT MD    -51.12756
    7       7     HANSON L      -96.37907      36.252312          USA         4    LEITCH IJ    -65.02949
    8       8 SOMEONE ELSE      -52.54160      -9.551913       Brazil         2   BENNETT MD    -51.12756
    # ... with 3 more variables: to_coord_lat <dbl>, to_country <chr>, weight <dbl>
    

    Now moving on to plotting this data on a map:

    world_map <- map_data('world') 
    myMap <- ggplot() +
      # Plot map
      geom_map(data = world_map, map = world_map, aes(map_id = region),
               color = 'gray85',
               fill = 'gray93') +
      xlim(c(-120, -20)) + ylim(c(-50, 50)) + 
      # Plot edges
      geom_segment(data = dt, 
                   alpha = 0.5,
                   color = "dodgerblue1",
                   aes(x = from_coord_lon, y = from_coord_lat,
                       xend = to_coord_lon, yend = to_coord_lat,
                       size = weight)) +
      scale_size(range = c(1,3)) +
      # Plot nodes
      geom_point(data = dt,
                 aes(x = from_coord_lon,
                     y = from_coord_lat,
                     size = from_size,
                     colour = from_country)) +
      # Plot names
      geom_text_repel(data = dt %>% 
                        select(from_author, 
                               from_coord_lon, 
                               from_coord_lat) %>% 
                        unique,
                      colour = 'dodgerblue1',
                      aes(x = from_coord_lon, y = from_coord_lat, label = from_author)) + 
      coord_equal() +
      theme_bw()
    

    Obviously you can change the colour and design in the usual way with ggplot2 grammar. Notice that you could also use geom_curve and the arrow aesthetic to get a plot similar to the one in the uber post linked in the comments above.

    0 讨论(0)
提交回复
热议问题