Joining a dendrogram and a heatmap

后端 未结 2 411
梦谈多话
梦谈多话 2021-02-03 23:17

I have a heatmap (gene expression from a set of samples):

set.seed(10)
mat <- matrix(rnorm(24*10,mean=1,sd=2),nrow=24,ncol=10,dimnames=list(paste         


        
相关标签:
2条回答
  • 2021-02-03 23:53

    Here is a (tentative) solution with the gene and sample dendrograms. It is a rather lacking solution, because I haven't managed to find a good way to get plot_grid to properly align all subplots, while automatically adjusting the figure proportions and distances between the sub-plots. In this version, the way to produce the overall figure was to add "padding subplots" (the flanking NULL entries in the call to plot_grid) and also to manually fine-tune the margins of the sub-plots (which strangely seem to be coupled in the various subplots). Once again, this is a rather lacking solution, hopefully I can manage to post a definitive version soon.

    library(plyr)
    library(reshape2)
    library(dplyr)
    library(ggplot2)
    library(ggdendro)
    library(gridExtra)
    library(dendextend)
    
    set.seed(10)
    
    # The source data
    mat <- matrix(rnorm(24 * 10, mean = 1, sd = 2), 
                  nrow = 24, ncol = 10, 
                  dimnames = list(paste("g", 1:24, sep = ""), 
                                  paste("sample", 1:10, sep = "")))
    
    getDendrogram <- function(data_mat, depth_cutoff) {
    
        # Obtain the dendrogram
        full_dend <- as.dendrogram(hclust(dist(data_mat)))
    
        # Cut the dendrogram
        h_c_cut <- cut(full_dend, h = depth_cutoff)
        dend_cut <- as.dendrogram(h_c_cut$upper)
        dend_cut <- hang.dendrogram(dend_cut)
        # Format to extend the branches (optional)
        dend_cut <- hang.dendrogram(dend_cut, hang = -1) 
        dend_data_cut <- dendro_data(dend_cut)
    
        # Extract the names assigned to the clusters (e.g., "Branch 1", "Branch 2", ...)
        cluster_names <- as.character(dend_data_cut$labels$label)
        # Extract the entries that belong to each group (using the 'labels' function)
        lst_entries_in_clusters <- h_c_cut$lower %>% 
            lapply(labels) %>% 
            setNames(cluster_names)
    
        # The dendrogram data for plotting
        segment_data <- segment(dend_data_cut)
    
        # Extract the positions of the clusters (by getting the positions of the 
        # leafs); data is already in the same order as in the cluster name
        cluster_positions <- segment_data[segment_data$yend == 0, "x"]
        cluster_pos_table <- data.frame(position = cluster_positions, 
                                        cluster = cluster_names)
    
        list(
            full_dend = full_dend, 
            dend_data_cut = dend_data_cut, 
    
            lst_entries_in_clusters = lst_entries_in_clusters, 
            segment_data = segment_data, 
            cluster_pos_table = cluster_pos_table
        )
    }
    
    # Cut the dendrograms
    gene_depth_cutoff <- 11
    sample_depth_cutof <- 12
    
    # Obtain the dendrograms
    gene_dend_data <- getDendrogram(mat, gene_depth_cutoff)
    sample_dend_data <- getDendrogram(t(mat), sample_depth_cutof)
    
    # Specify the positions for the genes and samples, accounting for the clusters
    gene_pos_table <- gene_dend_data$lst_entries_in_clusters %>%
        ldply(function(ss) data.frame(gene = ss), .id = "gene_cluster") %>%
        mutate(y_center = 1:nrow(.), 
               height = 1)
    # > head(gene_pos_table, 3)
    #    cluster gene y_center height
    # 1 Branch 1  g11        1      1
    # 2 Branch 1  g20        2      1
    # 3 Branch 1  g12        3      1
    
    # Specify the positions for the samples, accounting for the clusters
    sample_pos_table <- sample_dend_data$lst_entries_in_clusters %>%
        ldply(function(ss) data.frame(sample = ss), .id = "sample_cluster") %>%
        mutate(x_center = 1:nrow(.), 
               width = 1)
    
    # Neglecting the gap parameters
    heatmap_data <- mat %>% 
        reshape2::melt(value.name = "expr", varnames = c("gene", "sample")) %>%
        left_join(gene_pos_table) %>%
        left_join(sample_pos_table)
    
    # Limits for the vertical axes (genes / clusters)
    axis_spacing <- 0.1 * c(-1, 1)
    gene_axis_limits <- with(
        gene_pos_table, 
        c(min(y_center - 0.5 * height), max(y_center + 0.5 * height))) + axis_spacing
    
    sample_axis_limits <- with(
        sample_pos_table, 
        c(min(x_center - 0.5 * width), max(x_center + 0.5 * width))) + axis_spacing
    
    # For some reason, the margin of the various sub-plots end up being "coupled"; 
    # therefore, for now this requires some manual fine-tuning, 
    # which is obviously not ideal...
    # margin: top, right, bottom, and left
    margin_specs_hmap <- 1 * c(-2, -1, -1, -2)
    margin_specs_gene_dendr <- 1.7 * c(-1, -2, -1, -1)
    margin_specs_sample_dendr <- 1.7 * c(-2, -1, -2, -1)
    
    # Heatmap plot
    plt_hmap <- ggplot(heatmap_data, 
                       aes(x = x_center, y = y_center, fill = expr, 
                           height = height, width = width)) + 
        geom_tile() +
        scale_fill_gradient2("expr", high = "darkred", low = "darkblue") +
        scale_x_continuous(breaks = sample_pos_table$x_center, 
                           labels = sample_pos_table$sample, 
                           expand = c(0.01, 0.01)) + 
        scale_y_continuous(breaks = gene_pos_table$y_center, 
                           labels = gene_pos_table$gene, 
                           limits = gene_axis_limits, 
                           expand = c(0.01, 0.01), 
                           position = "right") + 
        labs(x = "Sample", y = "Gene") +
        theme_bw() +
        theme(axis.text.x = element_text(size = rel(1), hjust = 1, angle = 45), 
              axis.text.y = element_text(size = rel(0.7)), 
              legend.position = "none", 
              plot.margin = unit(margin_specs_hmap, "cm"), 
              panel.grid.minor = element_blank())
    
    # Dendrogram plots
    plt_gene_dendr <- ggplot(gene_dend_data$segment_data) + 
        geom_segment(aes(x = y, y = x, xend = yend, yend = xend)) + # inverted coordinates
        scale_x_reverse(expand = c(0, 0.5)) + 
        scale_y_continuous(breaks = gene_dend_data$cluster_pos_table$position, 
                           labels = gene_dend_data$cluster_pos_table$cluster, 
                           limits = gene_axis_limits, 
                           expand = c(0, 0)) + 
        labs(x = "Distance", y = "", colour = "", size = "") +
        theme_bw() + 
        theme(plot.margin = unit(margin_specs_gene_dendr, "cm"), 
              panel.grid.minor = element_blank())
    
    plt_sample_dendr <- ggplot(sample_dend_data$segment_data) + 
        geom_segment(aes(x = x, y = y, xend = xend, yend = yend)) + 
        scale_y_continuous(expand = c(0, 0.5), 
                           position = "right") + 
        scale_x_continuous(breaks = sample_dend_data$cluster_pos_table$position, 
                           labels = sample_dend_data$cluster_pos_table$cluster, 
                           limits = sample_axis_limits, 
                           position = "top", 
                           expand = c(0, 0)) + 
        labs(x = "", y = "Distance", colour = "", size = "") +
        theme_bw() + 
        theme(plot.margin = unit(margin_specs_sample_dendr, "cm"), 
              panel.grid.minor = element_blank(), 
              axis.text.x = element_text(size = rel(0.8), angle = 45, hjust = 0))
    
    library(cowplot)
    
    final_plot <- plot_grid(
        NULL,    NULL,           NULL,             NULL, 
        NULL,    NULL,           plt_sample_dendr, NULL, 
        NULL,    plt_gene_dendr, plt_hmap,         NULL, 
        NULL,    NULL,           NULL,             NULL, 
        nrow = 4, ncol = 4, align = "hv", 
        rel_heights = c(0.5, 1, 2, 0.5), 
        rel_widths = c(0.5, 1, 2, 0.5)
    )
    

    0 讨论(0)
  • 2021-02-04 00:06

    I faced pretty much the same issue some time ago. The basic trick I used was to specify directly the positions of the genes, given the results of the dendrogram. For the sake of simplicity, here is first the the case of plotting the full dendrogram:

    # For the full dendrogram
    library(plyr)
    library(reshape2)
    library(dplyr)
    library(ggplot2)
    library(ggdendro)
    library(gridExtra)
    library(dendextend)
    
    set.seed(10)
    
    # The source data
    mat <- matrix(rnorm(24 * 10, mean = 1, sd = 2), 
                  nrow = 24, ncol = 10, 
                  dimnames = list(paste("g", 1:24, sep = ""), 
                                  paste("sample", 1:10, sep = "")))
    
    sample_names <- colnames(mat)
    
    # Obtain the dendrogram
    dend <- as.dendrogram(hclust(dist(mat)))
    dend_data <- dendro_data(dend)
    
    # Setup the data, so that the layout is inverted (this is more 
    # "clear" than simply using coord_flip())
    segment_data <- with(
        segment(dend_data), 
        data.frame(x = y, y = x, xend = yend, yend = xend))
    # Use the dendrogram label data to position the gene labels
    gene_pos_table <- with(
        dend_data$labels, 
        data.frame(y_center = x, gene = as.character(label), height = 1))
    
    # Table to position the samples
    sample_pos_table <- data.frame(sample = sample_names) %>%
        mutate(x_center = (1:n()), 
               width = 1)
    
    # Neglecting the gap parameters
    heatmap_data <- mat %>% 
        reshape2::melt(value.name = "expr", varnames = c("gene", "sample")) %>%
        left_join(gene_pos_table) %>%
        left_join(sample_pos_table)
    
    # Limits for the vertical axes
    gene_axis_limits <- with(
        gene_pos_table, 
        c(min(y_center - 0.5 * height), max(y_center + 0.5 * height))
    ) + 
        0.1 * c(-1, 1) # extra spacing: 0.1
    
    # Heatmap plot
    plt_hmap <- ggplot(heatmap_data, 
                       aes(x = x_center, y = y_center, fill = expr, 
                           height = height, width = width)) + 
        geom_tile() +
        scale_fill_gradient2("expr", high = "darkred", low = "darkblue") +
        scale_x_continuous(breaks = sample_pos_table$x_center, 
                           labels = sample_pos_table$sample, 
                           expand = c(0, 0)) + 
        # For the y axis, alternatively set the labels as: gene_position_table$gene
        scale_y_continuous(breaks = gene_pos_table[, "y_center"], 
                           labels = rep("", nrow(gene_pos_table)),
                           limits = gene_axis_limits, 
                           expand = c(0, 0)) + 
        labs(x = "Sample", y = "") +
        theme_bw() +
        theme(axis.text.x = element_text(size = rel(1), hjust = 1, angle = 45), 
              # margin: top, right, bottom, and left
              plot.margin = unit(c(1, 0.2, 0.2, -0.7), "cm"), 
              panel.grid.minor = element_blank())
    
    # Dendrogram plot
    plt_dendr <- ggplot(segment_data) + 
        geom_segment(aes(x = x, y = y, xend = xend, yend = yend)) + 
        scale_x_reverse(expand = c(0, 0.5)) + 
        scale_y_continuous(breaks = gene_pos_table$y_center, 
                           labels = gene_pos_table$gene, 
                           limits = gene_axis_limits, 
                           expand = c(0, 0)) + 
        labs(x = "Distance", y = "", colour = "", size = "") +
        theme_bw() + 
        theme(panel.grid.minor = element_blank())
    
    library(cowplot)
    plot_grid(plt_dendr, plt_hmap, align = 'h', rel_widths = c(1, 1))
    

    Note that I kept the y axis ticks in the left in the heatmap plot, just to show that the dendrogram and ticks match exactly.

    Now, for the case of the cut dendrogram, one should keep in mind that the leafs of the dendrogram will no longer end in the exact position corresponding to a gene in a given cluster. To obtain the positions of the genes and the clusters, one needs to extract the data out of the two dendrograms that result from cutting the full one. Overall, to clarify the genes in the clusters, I added rectangles that delimit the clusters.

    # For the cut dendrogram
    library(plyr)
    library(reshape2)
    library(dplyr)
    library(ggplot2)
    library(ggdendro)
    library(gridExtra)
    library(dendextend)
    
    set.seed(10)
    
    # The source data
    mat <- matrix(rnorm(24 * 10, mean = 1, sd = 2), 
                  nrow = 24, ncol = 10, 
                  dimnames = list(paste("g", 1:24, sep = ""), 
                                  paste("sample", 1:10, sep = "")))
    
    sample_names <- colnames(mat)
    
    # Obtain the dendrogram
    full_dend <- as.dendrogram(hclust(dist(mat)))
    
    # Cut the dendrogram
    depth_cutoff <- 11
    h_c_cut <- cut(full_dend, h = depth_cutoff)
    dend_cut <- as.dendrogram(h_c_cut$upper)
    dend_cut <- hang.dendrogram(dend_cut)
    # Format to extend the branches (optional)
    dend_cut <- hang.dendrogram(dend_cut, hang = -1) 
    dend_data_cut <- dendro_data(dend_cut)
    
    # Extract the names assigned to the clusters (e.g., "Branch 1", "Branch 2", ...)
    cluster_names <- as.character(dend_data_cut$labels$label)
    # Extract the names of the haplotypes that belong to each group (using
    # the 'labels' function)
    lst_genes_in_clusters <- h_c_cut$lower %>% 
        lapply(labels) %>% 
        setNames(cluster_names)
    
    # Setup the data, so that the layout is inverted (this is more 
    # "clear" than simply using coord_flip())
    segment_data <- with(
        segment(dend_data_cut), 
        data.frame(x = y, y = x, xend = yend, yend = xend))
    
    # Extract the positions of the clusters (by getting the positions of the 
    # leafs); data is already in the same order as in the cluster name
    cluster_positions <- segment_data[segment_data$xend == 0, "y"]
    cluster_pos_table <- data.frame(y_position = cluster_positions, 
                                    cluster = cluster_names)
    
    # Specify the positions for the genes, accounting for the clusters
    gene_pos_table <- lst_genes_in_clusters %>%
        ldply(function(ss) data.frame(gene = ss), .id = "cluster") %>%
        mutate(y_center = 1:nrow(.), 
               height = 1)
    # > head(gene_pos_table, 3)
    #    cluster gene y_center height
    # 1 Branch 1  g11        1      1
    # 2 Branch 1  g20        2      1
    # 3 Branch 1  g12        3      1
    
    # Table to position the samples
    sample_pos_table <- data.frame(sample = sample_names) %>%
        mutate(x_center = 1:nrow(.), 
               width = 1)
    
    # Coordinates for plotting rectangles delimiting the clusters: aggregate
    # over the positions of the genes in each cluster
    cluster_delim_table <- gene_pos_table %>%
        group_by(cluster) %>%
        summarize(y_min = min(y_center - 0.5 * height), 
                  y_max = max(y_center + 0.5 * height)) %>%
        as.data.frame() %>%
        mutate(x_min = with(sample_pos_table, min(x_center - 0.5 * width)), 
               x_max = with(sample_pos_table, max(x_center + 0.5 * width)))
    
    # Neglecting the gap parameters
    heatmap_data <- mat %>% 
        reshape2::melt(value.name = "expr", varnames = c("gene", "sample")) %>%
        left_join(gene_pos_table) %>%
        left_join(sample_pos_table)
    
    # Limits for the vertical axes (genes / clusters)
    gene_axis_limits <- with(
        gene_pos_table, 
        c(min(y_center - 0.5 * height), max(y_center + 0.5 * height))
    ) + 
        0.1 * c(-1, 1) # extra spacing: 0.1
    
    # Heatmap plot
    plt_hmap <- ggplot(heatmap_data, 
                       aes(x = x_center, y = y_center, fill = expr, 
                           height = height, width = width)) + 
        geom_tile() +
        geom_rect(data = cluster_delim_table, 
                  aes(xmin = x_min, xmax = x_max, ymin = y_min, ymax = y_max), 
                  fill = NA, colour = "black", inherit.aes = FALSE) + 
        scale_fill_gradient2("expr", high = "darkred", low = "darkblue") +
        scale_x_continuous(breaks = sample_pos_table$x_center, 
                           labels = sample_pos_table$sample, 
                           expand = c(0.01, 0.01)) + 
        scale_y_continuous(breaks = gene_pos_table$y_center, 
                           labels = gene_pos_table$gene, 
                           limits = gene_axis_limits, 
                           expand = c(0, 0), 
                           position = "right") + 
        labs(x = "Sample", y = "") +
        theme_bw() +
        theme(axis.text.x = element_text(size = rel(1), hjust = 1, angle = 45), 
              # margin: top, right, bottom, and left
              plot.margin = unit(c(1, 0.2, 0.2, -0.1), "cm"), 
              panel.grid.minor = element_blank())
    
    # Dendrogram plot
    plt_dendr <- ggplot(segment_data) + 
        geom_segment(aes(x = x, y = y, xend = xend, yend = yend)) + 
        scale_x_reverse(expand = c(0, 0.5)) + 
        scale_y_continuous(breaks = cluster_pos_table$y_position, 
                           labels = cluster_pos_table$cluster, 
                           limits = gene_axis_limits, 
                           expand = c(0, 0)) + 
        labs(x = "Distance", y = "", colour = "", size = "") +
        theme_bw() + 
        theme(panel.grid.minor = element_blank())
    
    library(cowplot)
    plot_grid(plt_dendr, plt_hmap, align = 'h', rel_widths = c(1, 1.8))
    

    0 讨论(0)
提交回复
热议问题