Efficient extraction of all sub-polygons generated by self-intersecting features in a MultiPolygon

后端 未结 3 1820
孤街浪徒
孤街浪徒 2021-02-03 23:05

Starting from a shapefile containing a fairly large number (about 20000) of potentially partially-overlapping polygons, I\'d need to extract all the sub-polygons originated by i

相关标签:
3条回答
  • 2021-02-03 23:55

    Not sure if it helps you since it is not in R but I think there is a good way to solve this problem using Python. There is a library called GeoPandas (http://geopandas.org/index.html) which has allows you to easily do geo operations. In steps what you would need to do is the following:

    1. Load all Polygons into geopandas GeoDataFrames
    2. Loop all GeoDataFrames running a union overlay operation (http://geopandas.org/set_operations.html)

    The exact example is shown in the documentation.

    Before operation - 2 Polygons

    After operation - 9 Polygons

    If there is anything unclear feel free to let me know! Hope it helps!

    0 讨论(0)
  • 2021-02-04 00:00

    Input

    I modify the mock-up data a bit in order to illustrate the ability to deal with multiple attributes.

    library(tibble)
    library(dplyr)
    library(sf)
    
    ncircles <- 9
    rmax     <- 120
    x_limits <- c(-70,70)
    y_limits <- c(-30,30)
    set.seed(100) 
    xy <- data.frame(
      id = paste0("id_", 1:ncircles), 
      val = paste0("val_", 1:ncircles),
      x = runif(ncircles, min(x_limits), max(x_limits)),
      y = runif(ncircles, min(y_limits), max(y_limits)),
      stringsAsFactors = FALSE) %>% 
      as_tibble()
    
    polys <- st_as_sf(xy, coords = c(3,4)) %>% 
      st_buffer(runif(ncircles, min = 1, max = 20)) 
    plot(polys[1])
    

    Basic Operation

    Then define the following two functions.

    • cur: the current index of the base polygon
    • x: the index of polygons, which intersects with cur
    • input_polys: the simple feature of the polygons
    • keep_columns: the vector of names of attributes needed to keep after the geometric calculation

    get_difference_region() get the difference between the base polygon and other intersected polygons; get_intersection_region() get the intersections among the intersected polygons.

    library(stringr)
    get_difference_region <- function(cur, x, input_polys, keep_columns=c("id")){
      x <- x[!x==cur] # remove self 
      len <- length(x)
      input_poly_sfc <- st_geometry(input_polys)
      input_poly_attr <- as.data.frame(as.data.frame(input_polys)[, keep_columns])
    
      # base poly
      res_poly <- input_poly_sfc[[cur]]
      res_attr <- input_poly_attr[cur, ]
    
      # substract the intersection parts from base poly
      if(len > 0){
        for(i in 1:len){
          res_poly <- st_difference(res_poly, input_poly_sfc[[x[i]]])
        }
      }
      return(cbind(res_attr, data.frame(geom=st_as_text(res_poly))))
    }
    
    
    get_intersection_region <- function(cur, x, input_polys, keep_columns=c("id"), sep="&"){
      x <- x[!x<=cur] # remove self and remove duplicated obj 
      len <- length(x)
      input_poly_sfc <- st_geometry(input_polys)
      input_poly_attr <- as.data.frame(as.data.frame(input_polys)[, keep_columns])
    
      res_df <- data.frame()
      if(len > 0){
        for(i in 1:len){
          res_poly <- st_intersection(input_poly_sfc[[cur]], input_poly_sfc[[x[i]]])
          res_attr <- list()
          for(j in 1:length(keep_columns)){
            pred_attr <- str_split(input_poly_attr[cur, j], sep, simplify = TRUE)
            next_attr <- str_split(input_poly_attr[x[i], j], sep, simplify = TRUE)
            res_attr[[j]] <- paste(sort(unique(c(pred_attr, next_attr))), collapse=sep)
          }
          res_attr <- as.data.frame(res_attr)
          colnames(res_attr) <- keep_columns
          res_df <- rbind(res_df, cbind(res_attr, data.frame(geom=st_as_text(res_poly))))
        }
      }
      return(res_df)
    }
    

    First Level

    Difference

    Let's see the difference function effect on the mock-up data.

    flag <- st_intersects(polys, polys)
    
    first_diff <- data.frame()
    for(i in 1:length(flag)) {
      cur_df <- get_difference_region(i, flag[[i]], polys, keep_column = c("id", "val"))
      first_diff <- rbind(first_diff, cur_df)
    }
    first_diff_sf <- st_as_sf(first_diff, wkt="geom")
    first_diff_sf
    plot(first_diff_sf[1])
    

    Intersection

    first_inter <- data.frame()
    for(i in 1:length(flag)) {
      cur_df <- get_intersection_region(i, flag[[i]], polys, keep_column=c("id", "val"))
      first_inter <- rbind(first_inter, cur_df)
    }
    first_inter <- first_inter[row.names(first_inter %>% select(-geom) %>% distinct()),]
    first_inter_sf <- st_as_sf(first_inter, wkt="geom")
    first_inter_sf
    plot(first_inter_sf[1])
    

    Second Level

    use the intersection of first level as input, and repeat the same process.

    Difference

    flag <- st_intersects(first_inter_sf, first_inter_sf)
    # Second level difference region
    second_diff <- data.frame()
    for(i in 1:length(flag)) {
      cur_df <- get_difference_region(i, flag[[i]], first_inter_sf, keep_column = c("id", "val"))
      second_diff <- rbind(second_diff, cur_df)
    }
    second_diff_sf <- st_as_sf(second_diff, wkt="geom")
    second_diff_sf
    plot(second_diff_sf[1])
    

    Intersection

    second_inter <- data.frame()
    for(i in 1:length(flag)) {
      cur_df <- get_intersection_region(i, flag[[i]], first_inter_sf, keep_column=c("id", "val"))
      second_inter <- rbind(second_inter, cur_df)
    }
    second_inter <- second_inter[row.names(second_inter %>% select(-geom) %>% distinct()),]  # remove duplicated shape
    second_inter_sf <- st_as_sf(second_inter, wkt="geom")
    second_inter_sf
    plot(second_inter_sf[1])
    

    Get the distinct intersections of the second level, and use them as the input of the third level. We could get that the intersection results of the third level is NULL, then the process should end.

    Summary

    We put all the difference results into close list, and put all the intersection results into open list. Then we have:

    • When open list is empty, we stop the process
    • The results is close list

    Therefore, we get the final code here (the basic two functions should be declared):

    # init
    close_df <- data.frame()
    open_sf <- polys
    
    # main loop
    while(!is.null(open_sf)) {
      flag <- st_intersects(open_sf, open_sf)
      for(i in 1:length(flag)) {
        cur_df <- get_difference_region(i, flag[[i]], open_sf, keep_column = c("id", "val"))
        close_df <- rbind(close_df, cur_df)
      }
      cur_open <- data.frame()
      for(i in 1:length(flag)) {
        cur_df <- get_intersection_region(i, flag[[i]], open_sf, keep_column = c("id", "val"))
        cur_open <- rbind(cur_open, cur_df)
      }
      if(nrow(cur_open) != 0) {
        cur_open <- cur_open[row.names(cur_open %>% select(-geom) %>% distinct()),]
        open_sf <- st_as_sf(cur_open, wkt="geom")
      }
      else{
        open_sf <- NULL
      }
    }
    
    close_sf <- st_as_sf(close_df, wkt="geom")
    close_sf
    plot(close_sf[1])
    

    0 讨论(0)
  • 2021-02-04 00:01

    This has now been implemented in R package sf as the default result when st_intersection is called with a single argument (sf or sfc), see https://r-spatial.github.io/sf/reference/geos_binary_ops.html for the examples. (I'm not sure the origins field contains useful indexes; ideally they should point to indexes in x only, right now they kind of self-refer).

    0 讨论(0)
提交回复
热议问题