I know the big-O complexity of this algorithm is O(n^2)
, but I cannot understand why.
int sum = 0;
int i = 1; j = n * n;
while (i++ < j--)
s
Yes, this algorithm is O(n^2).
To calculate complexity, we have a table the complexities:
O(1)
O(log n)
O(n)
O(n log n)
O(n²)
O(n^a)
O(a^n)
O(n!)
Each row represent a set of algorithms. A set of algorithms that is in O(1), too it is in O(n), and O(n^2), etc. But not at reverse. So, your algorithm realize n*n/2 sentences.
O(n) < O(nlogn) < O(n*n/2) < O(n²)
So, the set of algorithms that include the complexity of your algorithm, is O(n²), because O(n) and O(nlogn) are smaller.
For example: To n = 100, sum = 5000. => 100 O(n) < 200 O(n·logn) < 5000 (n*n/2) < 10000(n^2)
I'm sorry for my english.