apply OneHotEncoder for several categorical columns in SparkMlib

前端 未结 2 1393
情话喂你
情话喂你 2021-02-03 13:16

I have several categorical features and would like to transform them all using OneHotEncoder. However, when I tried to apply the StringIndexer, there I

2条回答
  •  不思量自难忘°
    2021-02-03 13:38

    Spark >= 3.0:

    In Spark 3.0 OneHotEncoderEstimator has been renamed to OneHotEncoder:

    from pyspark.ml.feature import OneHotEncoderEstimator, OneHotEncoderModel
    
    encoder = OneHotEncoderEstimator(...)
    

    with

    from pyspark.ml.feature import OneHotEncoder, OneHotEncoderModel
    
    encoder = OneHotEncoder(...)
    

    Spark >= 2.3

    You can use newly added OneHotEncoderEstimator:

    from pyspark.ml.feature import OneHotEncoderEstimator, OneHotEncoderModel
    
    encoder = OneHotEncoderEstimator(
        inputCols=[indexer.getOutputCol() for indexer in indexers],
        outputCols=[
            "{0}_encoded".format(indexer.getOutputCol()) for indexer in indexers]
    )
    
    assembler = VectorAssembler(
        inputCols=encoder.getOutputCols(),
        outputCol="features"
    )
    
    pipeline = Pipeline(stages=indexers + [encoder, assembler])
    pipeline.fit(df).transform(df)
    

    Spark < 2.3

    It is not possible. StringIndexer transformer operates only on a single column at the time so you'll need a single indexer and a single encoder for each column you want to transform.

    from pyspark.ml import Pipeline
    from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler
    
    cols = ['a', 'b', 'c', 'd']
    
    indexers = [
        StringIndexer(inputCol=c, outputCol="{0}_indexed".format(c))
        for c in cols
    ]
    
    encoders = [
        OneHotEncoder(
            inputCol=indexer.getOutputCol(),
            outputCol="{0}_encoded".format(indexer.getOutputCol())) 
        for indexer in indexers
    ]
    
    assembler = VectorAssembler(
        inputCols=[encoder.getOutputCol() for encoder in encoders],
        outputCol="features"
    )
    
    
    pipeline = Pipeline(stages=indexers + encoders + [assembler])
    pipeline.fit(df).transform(df).show()
    

提交回复
热议问题