I have two dataframes df1
and df2
and I want to join these tables many times on a high cardinality field called visitor_id
. I would like
You can use the bucketBy method of the DataFrameWriter (other documentation).
In the following example, the value of the column VisitorID will be hashed into 500 buckets. Normally, for the join Spark would perform an exchange phase based on the hash on the VisitorID. However, in this case you already have the data pre-partitioned with the hash.
inputRdd = sc.parallelize(list((i, i%200) for i in range(0,1000000)))
schema = StructType([StructField("VisitorID", IntegerType(), True),
StructField("visitor_partition", IntegerType(), True)])
inputdf = inputRdd.toDF(schema)
inputdf.write.bucketBy(500, "VisitorID").saveAsTable("bucketed_table")
inputDf1 = spark.sql("select * from bucketed_table")
inputDf2 = spark.sql("select * from bucketed_table")
inputDf3 = inputDf1.alias("df1").join(inputDf2.alias("df2"), col("df1.VisitorID") == col("df2.VisitorID"))
Sometimes Spark query optimizer still choose broadcast exchange, so for our example, let's disable auto broadcasting
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", -1)
The physical plan would look as follow:
== Physical Plan ==
*(3) SortMergeJoin [VisitorID#351], [VisitorID#357], Inner
:- *(1) Sort [VisitorID#351 ASC NULLS FIRST], false, 0
: +- *(1) Project [VisitorID#351, visitor_partition#352]
: +- *(1) Filter isnotnull(VisitorID#351)
: +- *(1) FileScan parquet default.bucketed_6[VisitorID#351,visitor_partition#352] Batched: true, DataFilters: [isnotnull(VisitorID#351)], Format: Parquet, Location: InMemoryFileIndex[dbfs:/user/hive/warehouse/bucketed_6], PartitionFilters: [], PushedFilters: [IsNotNull(VisitorID)], ReadSchema: struct, SelectedBucketsCount: 500 out of 500
+- *(2) Sort [VisitorID#357 ASC NULLS FIRST], false, 0
+- *(2) Project [VisitorID#357, visitor_partition#358]
+- *(2) Filter isnotnull(VisitorID#357)
+- *(2) FileScan parquet default.bucketed_6[VisitorID#357,visitor_partition#358] Batched: true, DataFilters: [isnotnull(VisitorID#357)], Format: Parquet, Location: InMemoryFileIndex[dbfs:/user/hive/warehouse/bucketed_6], PartitionFilters: [], PushedFilters: [IsNotNull(VisitorID)], ReadSchema: struct, SelectedBucketsCount: 500 out of 500
Doing something like:
inputdf.write.partitionBy("visitor_partition").saveAsTable("partitionBy_2")
Creates indeed the structure with a folder for each partition. But it's not working since the Spark join is based on the hash and is not able to leverage your custom structure.
Edit: I misunderstood your example. I believe you were talking about something like partitionBy, not repartition as mentioned in the previous version.