For python dataframe, info() function provides memory usage. Is there any equivalent in pyspark ? Thanks
Try to use the _to_java_object_rdd() function:
import py4j.protocol
from py4j.protocol import Py4JJavaError
from py4j.java_gateway import JavaObject
from py4j.java_collections import JavaArray, JavaList
from pyspark import RDD, SparkContext
from pyspark.serializers import PickleSerializer, AutoBatchedSerializer
# your dataframe what you'd estimate
df
# Helper function to convert python object to Java objects
def _to_java_object_rdd(rdd):
""" Return a JavaRDD of Object by unpickling
It will convert each Python object into Java object by Pyrolite, whenever the
RDD is serialized in batch or not.
"""
rdd = rdd._reserialize(AutoBatchedSerializer(PickleSerializer()))
return rdd.ctx._jvm.org.apache.spark.mllib.api.python.SerDe.pythonToJava(rdd._jrdd, True)
# First you have to convert it to an RDD
JavaObj = _to_java_object_rdd(df.rdd)
# Now we can run the estimator
sc._jvm.org.apache.spark.util.SizeEstimator.estimate(JavaObj)