I have sequential data and I declared a LSTM model which predicts y
with x
in Keras. So if I call model.predict(x1)
and model.predic
reset_states
clears only the hidden states of your network. It's worth to mention that depending on if the option stateful=True
was set in your network - the behaviour of this function might be different. If it's not set - all states are automatically reset after every batch computations in your network (so e.g. after calling fit
, predict
and evaluate
also). If not - you should call reset_states
every time, when you want to make consecutive model calls independent.