Creating my dataframe:
from pandas import *
arrays = [[\'bar\', \'bar\', \'baz\', \'baz\', \'foo\', \'foo\', \'qux\', \'qux\'],
[\'one\', \'two\', \'o
The set_levels method was causing my new column names to be out of order. So I found a different solution that isn't very clean, but works well. The method is to print df.index (or equivalently df.columns) and then copy and paste the output with the desired values changed. For example:
print data.index
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']], labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]], names=['first', 'second'])
data.index = MultiIndex(levels=[['new_bar', 'new_baz', 'new_foo', 'new_qux'],
['new_one', 'new_two']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['first', 'second'])
We can have full control over names by editing the labels as well. For example:
data.index = MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'],
['one', 'twooo', 'three', 'four',
'five', 'siz', 'seven', 'eit']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 3, 4, 5, 6, 7]],
names=['first', 'second'])
Note that in this example we have already done something like from pandas import MultiIndex or from pandas import *.