Converting Coq to Idris

后端 未结 1 1469
悲&欢浪女
悲&欢浪女 2021-02-02 16:27

What would be some useful guidelines for converting Coq source to Idris (e.g. how similar are their type systems and what can be made of translating the proofs)? From what I gat

1条回答
  •  执念已碎
    2021-02-02 17:10

    I've recently translated a chunk of Software Foundations and did a partial port of {P|N|Z}Arith, some observations I've made in the process:

    Generally using Idris tactics (in their Pruvloj/Elab.Reflection form) is not really recommended at the moment, this facility is somewhat fragile, and pretty hard to debug when something goes wrong. It's better to use the so-called "Agda style", relying on pattern matching where possible. Here are some rough equivalences for simpler Coq tactics:

    • intros - just mention variables on the LHS
    • reflexivity - Refl
    • apply- calling the function directly
    • simpl - simplification is done automatically by Idris
    • unfold - also done automatically for you
    • symmetry - sym
    • congruence/f_equal - cong
    • split - split in LHS
    • rewrite - rewrite ... in
    • rewrite <- - rewrite sym $ ... in
    • rewrite in - to rewrite inside something you have as a parameter you can use the replace {P=\x=>...} equation term construct. Sadly Idris is not able to infer P most of the time, so this becomes a bit bulky. Another option is to extract the type into a lemma and use rewrites, however this won't always work (e.g., when replace makes a large chunk of a term disappear)
    • destruct - if on a single variable, try splitting in LHS, otherwise use the with construct
    • induction - split in LHS and use a recursive call in a rewrite or directly. Make sure that at least one of arguments in recursion is structurally smaller, or you'll fail totality and won't be able to use the result as a lemma. For more complex expressions you can also try SizeAccessible from Prelude.WellFounded.
    • trivial - usually amounts to splitting in LHS as much as possible and solving with Refls
    • assert - a lemma under where
    • exists - dependent pair (x ** prf)
    • case - either case .. of or with. Be careful with case however - don't use it in anything you will later want to prove things about, otherwise you'll get stuck on rewrite (see issue #4001). A workaround is to make top-level (currently you can't refer to lemmas under where/with, see issue #3991) pattern-matching helpers.
    • revert - "unintroduce" a variable by making a lambda and later applying it to said variable
    • inversion - manually define and use trivial lemmas about constructors:

      -- injectivity, used same as `cong`/`sym`
      FooInj : Foo a = Foo b -> a = b
      FooInj Refl = Refl
      
      -- disjointness, this sits in scope and is invoked when using `uninhabited`/`absurd`
      Uninhabited (Foo = Bar) where   
        uninhabited Refl impossible   
      

    0 讨论(0)
提交回复
热议问题