I am working with a 2D Numpy masked_array in Python. I need to change the data values in the masked area such that they equal the nearest unmasked value.
NB. If there ar
For more complicated cases you could use scipy.spatial:
from scipy.spatial import KDTree
x,y=np.mgrid[0:a.shape[0],0:a.shape[1]]
xygood = np.array((x[~a.mask],y[~a.mask])).T
xybad = np.array((x[a.mask],y[a.mask])).T
a[a.mask] = a[~a.mask][KDTree(xygood).query(xybad)[1]]
print a
[[0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 13 14 15 16 17 28 29]
[30 31 32 32 44 45 46 38 38 39]
[40 41 42 43 44 45 46 47 48 49]
[50 51 52 53 54 55 56 57 58 59]
[60 61 62 63 64 65 66 67 68 69]
[70 71 72 73 74 75 76 77 78 79]
[80 81 82 83 84 85 86 87 78 89]
[90 91 92 93 94 95 96 97 98 99]]