Continuous vs Discrete artificial neural networks

后端 未结 5 1017
再見小時候
再見小時候 2021-02-02 16:15

I realize that this is probably a very niche question, but has anyone had experience with working with continuous neural networks? I\'m specifically interested in what a continu

5条回答
  •  滥情空心
    2021-02-02 16:45

    I think this is either only of interest to theoreticians trying to prove that no function is beyond the approximation power of the NN architecture, or it may be a proposition on a method of constructing a piecewise linear approximation (via backpropagation) of a function. If it's the latter, I think there are existing methods that are much faster, less susceptible to local minima, and less prone to overfitting than backpropagation.

    My understanding of NN is that the connections and neurons contain a compressed representation of the data it's trained on. The key is that you have a large dataset that requires more memory than the "general lesson" that is salient throughout each example. The NN is supposedly the economical container that will distill this general lesson from that huge corpus.

    If your NN has enough hidden units to densely sample the original function, this is equivalent to saying your NN is large enough to memorize the training corpus (as opposed to generalizing from it). Think of the training corpus as also a sample of the original function at a given resolution. If the NN has enough neurons to sample the function at an even higher resolution than your training corpus, then there is simply no pressure for the system to generalize because it's not constrained by the number of neurons to do so.

    Since no generalization is induced nor required, you might as well just memorize the corpus by storing all of your training data in memory and use k-nearest neighbor, which will always perform better than any NN, and will always perform as well as any NN even as the NN's sampling resolution approaches infinity.

提交回复
热议问题