This question is related to rostering or staffing. I\'m trying to assign various jobs to individuals (employees). Using the df
below,
`[Person]` =
There's a live version of this answer online that you can try for yourself.
Here's an answer in the form of the allocatePeople
function. It's based around precomputing all of the indices where the areas repeat within an hour:
from collections import Counter
import numpy as np
import pandas as pd
def getAssignedPeople(df, areasPerPerson):
areas = df['Area'].values
places = df['Place'].values
times = pd.to_datetime(df['Time']).values
maxPerson = np.ceil(areas.size / float(areasPerPerson)) - 1
assignmentCount = Counter()
assignedPeople = []
assignedPlaces = {}
heldPeople = {}
heldAreas = {}
holdAvailable = True
person = 0
# search for repeated areas. Mark them if the next repeat occurs within an hour
ixrep = np.argmax(np.triu(areas.reshape(-1, 1)==areas, k=1), axis=1)
holds = np.zeros(areas.size, dtype=bool)
holds[ixrep.nonzero()] = (times[ixrep[ixrep.nonzero()]] - times[ixrep.nonzero()]) < np.timedelta64(1, 'h')
for area,place,hold in zip(areas, places, holds):
if (area, place) in assignedPlaces:
# this unique (area, place) has already been assigned to someone
assignedPeople.append(assignedPlaces[(area, place)])
continue
if assignmentCount[person] >= areasPerPerson:
# the current person is already assigned to enough areas, move on to the next
a = heldPeople.pop(person, None)
heldAreas.pop(a, None)
person += 1
if area in heldAreas:
# assign to the person held in this area
p = heldAreas.pop(area)
heldPeople.pop(p)
else:
# get the first non-held person. If we need to hold in this area,
# also make sure the person has at least 2 free assignment slots,
# though if it's the last person assign to them anyway
p = person
while p in heldPeople or (hold and holdAvailable and (areasPerPerson - assignmentCount[p] < 2)) and not p==maxPerson:
p += 1
assignmentCount.update([p])
assignedPlaces[(area, place)] = p
assignedPeople.append(p)
if hold:
if p==maxPerson:
# mark that there are no more people available to perform holds
holdAvailable = False
# this area recurrs in an hour, mark that the person should be held here
heldPeople[p] = area
heldAreas[area] = p
return assignedPeople
def allocatePeople(df, areasPerPerson=3):
assignedPeople = getAssignedPeople(df, areasPerPerson=areasPerPerson)
df = df.copy()
df.loc[:,'Person'] = df['Person'].unique()[assignedPeople]
return df
Note the use of df['Person'].unique()
in allocatePeople
. That handles the case where people are repeated in the input. It is assumed that the order of people in the input is the desired order in which those people should be assigned.
I tested allocatePeople
against the OP's example input (example1
and example2
) and also against a couple of edge cases I came up with that I think(?) match the OP's desired algorithm:
ds = dict(
example1 = ({
'Time' : ['8:03:00','8:17:00','8:20:00','8:28:00','8:35:00','08:40:00','08:42:00','08:45:00','08:50:00'],
'Place' : ['House 1','House 2','House 3','House 4','House 5','House 1','House 2','House 3','House 2'],
'Area' : ['A','B','C','D','E','D','E','F','G'],
'On' : ['1','2','3','4','5','6','7','8','9'],
'Person' : ['Person 1','Person 2','Person 3','Person 4','Person 5','Person 4','Person 5','Person 6','Person 7'],
}),
example2 = ({
'Time' : ['8:03:00','8:17:00','8:20:00','8:28:00','8:35:00','8:40:00','8:42:00','8:45:00','8:50:00'],
'Place' : ['House 1','House 2','House 3','House 1','House 2','House 3','House 1','House 2','House 3'],
'Area' : ['X','X','X','X','X','X','X','X','X'],
'On' : ['1','2','3','3','3','3','3','3','3'],
'Person' : ['Person 1','Person 1','Person 1','Person 1','Person 1','Person 1','Person 1','Person 1','Person 1'],
}),
long_repeats = ({
'Time' : ['8:03:00','8:17:00','8:20:00','8:25:00','8:30:00','8:31:00','8:35:00','8:45:00','8:50:00'],
'Place' : ['House 1','House 2','House 3','House 4','House 1','House 1','House 2','House 3','House 2'],
'Area' : ['A','A','A','A','B','C','C','C','B'],
'Person' : ['Person 1','Person 1','Person 1','Person 2','Person 3','Person 4','Person 4','Person 4','Person 3'],
'On' : ['1','2','3','4','5','6','7','8','9'],
}),
many_repeats = ({
'Time' : ['8:03:00','8:17:00','8:20:00','8:28:00','8:35:00','08:40:00','08:42:00','08:45:00','08:50:00'],
'Place' : ['House 1','House 2','House 3','House 4','House 1','House 1','House 2','House 1','House 2'],
'Area' : ['A', 'B', 'C', 'D', 'D', 'E', 'E', 'F', 'F'],
'On' : ['1','2','3','4','5','6','7','8','9'],
'Person' : ['Person 1','Person 1','Person 1','Person 2','Person 3','Person 4','Person 3','Person 5','Person 6'],
}),
large_gap = ({
'Time' : ['8:03:00','8:17:00','8:20:00','8:28:00','8:35:00','08:40:00','08:42:00','08:45:00','08:50:00'],
'Place' : ['House 1','House 2','House 3','House 4','House 1','House 1','House 2','House 1','House 3'],
'Area' : ['A', 'B', 'C', 'D', 'E', 'F', 'D', 'D', 'D'],
'On' : ['1','2','3','4','5','6','7','8','9'],
'Person' : ['Person 1','Person 1','Person 1','Person 2','Person 3','Person 4','Person 3','Person 5','Person 6'],
}),
different_times = ({
'Time' : ['8:03:00','8:17:00','8:20:00','8:28:00','8:35:00','08:40:00','09:42:00','09:45:00','09:50:00'],
'Place' : ['House 1','House 2','House 3','House 4','House 1','House 1','House 2','House 1','House 1'],
'Area' : ['A', 'B', 'C', 'D', 'D', 'E', 'E', 'F', 'G'],
'On' : ['1','2','3','4','5','6','7','8','9'],
'Person' : ['Person 1','Person 1','Person 1','Person 2','Person 3','Person 4','Person 3','Person 5','Person 6'],
})
)
expectedPeoples = dict(
example1 = [1,1,1,2,3,2,3,2,3],
example2 = [1,1,1,1,1,1,1,1,1],
long_repeats = [1,1,1,2,2,3,3,3,2],
many_repeats = [1,1,1,2,2,3,3,2,3],
large_gap = [1,1,1,2,3,3,2,2,3],
different_times = [1,1,1,2,2,2,3,3,3],
)
for name,d in ds.items():
df = pd.DataFrame(d)
expected = ['Person %d' % i for i in expectedPeoples[name]]
ap = allocatePeople(df)
print(name, ap, sep='\n', end='\n\n')
np.testing.assert_array_equal(ap['Person'], expected)
The assert_array_equal
statements pass, and the output matches OP's expected output:
example1
Time Place Area On Person
0 8:03:00 House 1 A 1 Person 1
1 8:17:00 House 2 B 2 Person 1
2 8:20:00 House 3 C 3 Person 1
3 8:28:00 House 4 D 4 Person 2
4 8:35:00 House 5 E 5 Person 3
5 08:40:00 House 1 D 6 Person 2
6 08:42:00 House 2 E 7 Person 3
7 08:45:00 House 3 F 8 Person 2
8 08:50:00 House 2 G 9 Person 3
example2
Time Place Area On Person
0 8:03:00 House 1 X 1 Person 1
1 8:17:00 House 2 X 2 Person 1
2 8:20:00 House 3 X 3 Person 1
3 8:28:00 House 1 X 3 Person 1
4 8:35:00 House 2 X 3 Person 1
5 8:40:00 House 3 X 3 Person 1
6 8:42:00 House 1 X 3 Person 1
7 8:45:00 House 2 X 3 Person 1
8 8:50:00 House 3 X 3 Person 1
The output for my test cases matches my expectations as well:
long_repeats
Time Place Area Person On
0 8:03:00 House 1 A Person 1 1
1 8:17:00 House 2 A Person 1 2
2 8:20:00 House 3 A Person 1 3
3 8:25:00 House 4 A Person 2 4
4 8:30:00 House 1 B Person 2 5
5 8:31:00 House 1 C Person 3 6
6 8:35:00 House 2 C Person 3 7
7 8:45:00 House 3 C Person 3 8
8 8:50:00 House 2 B Person 2 9
many_repeats
Time Place Area On Person
0 8:03:00 House 1 A 1 Person 1
1 8:17:00 House 2 B 2 Person 1
2 8:20:00 House 3 C 3 Person 1
3 8:28:00 House 4 D 4 Person 2
4 8:35:00 House 1 D 5 Person 2
5 08:40:00 House 1 E 6 Person 3
6 08:42:00 House 2 E 7 Person 3
7 08:45:00 House 1 F 8 Person 2
8 08:50:00 House 2 F 9 Person 3
large_gap
Time Place Area On Person
0 8:03:00 House 1 A 1 Person 1
1 8:17:00 House 2 B 2 Person 1
2 8:20:00 House 3 C 3 Person 1
3 8:28:00 House 4 D 4 Person 2
4 8:35:00 House 1 E 5 Person 3
5 08:40:00 House 1 F 6 Person 3
6 08:42:00 House 2 D 7 Person 2
7 08:45:00 House 1 D 8 Person 2
8 08:50:00 House 3 D 9 Person 3
different_times
Time Place Area On Person
0 8:03:00 House 1 A 1 Person 1
1 8:17:00 House 2 B 2 Person 1
2 8:20:00 House 3 C 3 Person 1
3 8:28:00 House 4 D 4 Person 2
4 8:35:00 House 1 D 5 Person 2
5 08:40:00 House 1 E 6 Person 2
6 09:42:00 House 2 E 7 Person 3
7 09:45:00 House 1 F 8 Person 3
8 09:50:00 House 1 G 9 Person 3
Let me know if it does everything you wanted, or if it still needs some tweaks. I think everyone is eager to see you fulfill your vision.