I want to sort a large array of integers (say 1 millon elements) lexicographically.
Example:
input [] = { 100, 21 , 22 , 99 , 1 , 927 }
sorted[] = { 1
Here's a community wiki to compare the solutions. I took nim's code and made it easily extensible. Feel free to add your solutions and outputs.
Sample runs an old slow computer (3 GB RAM, Core2Duo U9400) with g++4.9 @ -O3 -march=native
:
number of elements: 1e+03 size of integer type: 4 reference solution: Lightness Races in Orbit solution "dyp": duration: 0 ms and 301 microseconds comparison to reference solution: exact match solution "Nim": duration: 2 ms and 160 microseconds comparison to reference solution: exact match solution "nyarlathotep": duration: 8 ms and 126 microseconds comparison to reference solution: exact match solution "notbad": duration: 1 ms and 102 microseconds comparison to reference solution: exact match solution "Eric Postpischil": duration: 2 ms and 550 microseconds comparison to reference solution: exact match solution "Lightness Races in Orbit": duration: 17 ms and 469 microseconds comparison to reference solution: exact match solution "pts": duration: 1 ms and 92 microseconds comparison to reference solution: exact match ========================================================== number of elements: 1e+04 size of integer type: 4 reference solution: Lightness Races in Orbit solution "nyarlathotep": duration: 109 ms and 712 microseconds comparison to reference solution: exact match solution "Lightness Races in Orbit": duration: 272 ms and 819 microseconds comparison to reference solution: exact match solution "dyp": duration: 1 ms and 748 microseconds comparison to reference solution: exact match solution "notbad": duration: 16 ms and 115 microseconds comparison to reference solution: exact match solution "pts": duration: 15 ms and 10 microseconds comparison to reference solution: exact match solution "Eric Postpischil": duration: 33 ms and 301 microseconds comparison to reference solution: exact match solution "Nim": duration: 17 ms and 83 microseconds comparison to reference solution: exact match ========================================================== number of elements: 1e+05 size of integer type: 4 reference solution: Lightness Races in Orbit solution "Nim": duration: 217 ms and 4 microseconds comparison to reference solution: exact match solution "pts": duration: 199 ms and 505 microseconds comparison to reference solution: exact match solution "dyp": duration: 20 ms and 330 microseconds comparison to reference solution: exact match solution "Eric Postpischil": duration: 415 ms and 477 microseconds comparison to reference solution: exact match solution "Lightness Races in Orbit": duration: 3955 ms and 58 microseconds comparison to reference solution: exact match solution "notbad": duration: 215 ms and 259 microseconds comparison to reference solution: exact match solution "nyarlathotep": duration: 1341 ms and 46 microseconds comparison to reference solution: mismatch found ========================================================== number of elements: 1e+06 size of integer type: 4 reference solution: Lightness Races in Orbit solution "Lightness Races in Orbit": duration: 52861 ms and 314 microseconds comparison to reference solution: exact match solution "Eric Postpischil": duration: 4757 ms and 608 microseconds comparison to reference solution: exact match solution "nyarlathotep": duration: 15654 ms and 195 microseconds comparison to reference solution: mismatch found solution "dyp": duration: 233 ms and 779 microseconds comparison to reference solution: exact match solution "pts": duration: 2181 ms and 634 microseconds comparison to reference solution: exact match solution "Nim": duration: 2539 ms and 9 microseconds comparison to reference solution: exact match solution "notbad": duration: 2675 ms and 362 microseconds comparison to reference solution: exact match ========================================================== number of elements: 1e+07 size of integer type: 4 reference solution: Lightness Races in Orbit solution "notbad": duration: 33425 ms and 423 microseconds comparison to reference solution: exact match solution "pts": duration: 26000 ms and 398 microseconds comparison to reference solution: exact match solution "Eric Postpischil": duration: 56206 ms and 359 microseconds comparison to reference solution: exact match solution "Lightness Races in Orbit": duration: 658540 ms and 342 microseconds comparison to reference solution: exact match solution "nyarlathotep": duration: 187064 ms and 518 microseconds comparison to reference solution: mismatch found solution "Nim": duration: 30519 ms and 227 microseconds comparison to reference solution: exact match solution "dyp": duration: 2624 ms and 644 microseconds comparison to reference solution: exact match
The algorithms have to be structs with function-call operator templates that support the interface:
template operator()(RaIt begin, RaIt end);
A copy of the input data is provided as a parameter, the algorithm is expected to provide the result in the same range (e.g. in-place sort).
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using duration_t = decltype( std::chrono::high_resolution_clock::now()
- std::chrono::high_resolution_clock::now());
template
struct result_t
{
std::vector numbers;
duration_t duration;
char const* name;
};
template
result_t::value_type>
apply_algorithm(RaIt p_beg, RaIt p_end, F f, char const* name)
{
using value_type = typename std::iterator_traits::value_type;
std::vector inplace(p_beg, p_end);
auto start = std::chrono::high_resolution_clock::now();
f(begin(inplace), end(inplace));
auto end = std::chrono::high_resolution_clock::now();
auto duration = end - start;
return {std::move(inplace), duration, name};
}
// non-optimized version
int count_digits(int p) // returns `0` for `p == 0`
{
int res = 0;
for(; p != 0; ++res)
{
p /= 10;
}
return res;
}
// non-optimized version
int my_pow10(unsigned exp)
{
int res = 1;
for(; exp != 0; --exp)
{
res *= 10;
}
return res;
}
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// paste algorithms here
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
int main(int argc, char** argv)
{
using integer_t = int;
constexpr integer_t dist_min = 0;
constexpr integer_t dist_max = std::numeric_limits::max()/10;
constexpr std::size_t default_number_of_elements = 1E6;
const std::size_t number_of_elements = argc>1 ? std::atoll(argv[1]) :
default_number_of_elements;
std::cout << "number of elements: ";
std::cout << std::scientific << std::setprecision(0);
std::cout << (double)number_of_elements << "\n";
std::cout << /*std::defaultfloat <<*/ std::setprecision(6);
std::cout.unsetf(std::ios_base::floatfield);
std::cout << "size of integer type: " << sizeof(integer_t) << "\n\n";
std::vector input;
{
input.reserve(number_of_elements);
std::random_device rd;
std::mt19937 gen( rd() );
std::uniform_int_distribution<> dist(dist_min, dist_max);
for(std::size_t i = 0; i < number_of_elements; ++i)
input.push_back( dist(gen) );
}
auto b = begin(input);
auto e = end(input);
using res_t = result_t;
std::vector< std::function > algorithms;
#define MAKE_BINDER(B, E, ALGO, NAME) \
std::bind( &apply_algorithm, \
B,E,ALGO,NAME )
constexpr auto lightness_name = "Lightness Races in Orbit";
algorithms.push_back( MAKE_BINDER(b, e, lightness(), lightness_name) );
algorithms.push_back( MAKE_BINDER(b, e, dyp(), "dyp") );
algorithms.push_back( MAKE_BINDER(b, e, nim(), "Nim") );
algorithms.push_back( MAKE_BINDER(b, e, pts(), "pts") );
algorithms.push_back( MAKE_BINDER(b, e, epost(), "Eric Postpischil") );
algorithms.push_back( MAKE_BINDER(b, e, nyar(), "nyarlathotep") );
algorithms.push_back( MAKE_BINDER(b, e, notbad(), "notbad") );
{
std::srand( std::random_device()() );
std::random_shuffle(begin(algorithms), end(algorithms));
}
std::vector< result_t > res;
for(auto& algo : algorithms)
res.push_back( algo() );
auto reference_solution
= *std::find_if(begin(res), end(res),
[](result_t const& p)
{ return 0 == std::strcmp(lightness_name, p.name); });
std::cout << "reference solution: "<(e.duration);
std::cout << "\tduration: "<
Current algorithms; note I replaced the digit counters and pow-of-10 with the global function, so we all benefit if someone optimizes.
struct lightness
{
template void operator()(RaIt b, RaIt e)
{
using T = typename std::iterator_traits::value_type;
/**
* Sorts the array lexicographically.
*
* The trick is that we have to compare digits left-to-right
* (considering typical Latin decimal notation) and that each of
* two numbers to compare may have a different number of digits.
*
* This is very efficient in storage space, but inefficient in
* execution time; an approach that pre-visits each element and
* stores a translated representation will at least double your
* storage requirements (possibly a problem with large inputs)
* but require only a single translation of each element.
*/
std::sort(
b,
e,
[](T lhs, T rhs) -> bool {
// Returns true if lhs < rhs
// Returns false otherwise
const auto BASE = 10;
const bool LHS_FIRST = true;
const bool RHS_FIRST = false;
const bool EQUAL = false;
// There's no point in doing anything at all
// if both inputs are the same; strict-weak
// ordering requires that we return `false`
// in this case.
if (lhs == rhs) {
return EQUAL;
}
// Compensate for sign
if (lhs < 0 && rhs < 0) {
// When both are negative, sign on its own yields
// no clear ordering between the two arguments.
//
// Remove the sign and continue as for positive
// numbers.
lhs *= -1;
rhs *= -1;
}
else if (lhs < 0) {
// When the LHS is negative but the RHS is not,
// consider the LHS "first" always as we wish to
// prioritise the leading '-'.
return LHS_FIRST;
}
else if (rhs < 0) {
// When the RHS is negative but the LHS is not,
// consider the RHS "first" always as we wish to
// prioritise the leading '-'.
return RHS_FIRST;
}
// Counting the number of digits in both the LHS and RHS
// arguments is *almost* trivial.
const auto lhs_digits = (
lhs == 0
? 1
: std::ceil(std::log(lhs+1)/std::log(BASE))
);
const auto rhs_digits = (
rhs == 0
? 1
: std::ceil(std::log(rhs+1)/std::log(BASE))
);
// Now we loop through the positions, left-to-right,
// calculating the digit at these positions for each
// input, and comparing them numerically. The
// lexicographic nature of the sorting comes from the
// fact that we are doing this per-digit comparison
// rather than considering the input value as a whole.
const auto max_pos = std::max(lhs_digits, rhs_digits);
for (auto pos = 0; pos < max_pos; pos++) {
if (lhs_digits - pos == 0) {
// Ran out of digits on the LHS;
// prioritise the shorter input
return LHS_FIRST;
}
else if (rhs_digits - pos == 0) {
// Ran out of digits on the RHS;
// prioritise the shorter input
return RHS_FIRST;
}
else {
const auto lhs_x = (lhs / static_cast(std::pow(BASE, lhs_digits - 1 - pos))) % BASE;
const auto rhs_x = (rhs / static_cast(std::pow(BASE, rhs_digits - 1 - pos))) % BASE;
if (lhs_x < rhs_x)
return LHS_FIRST;
else if (rhs_x < lhs_x)
return RHS_FIRST;
}
}
// If we reached the end and everything still
// matches up, then something probably went wrong
// as I'd have expected to catch this in the tests
// for equality.
assert("Unknown case encountered");
// dyp: suppress warning and throw
throw "up";
}
);
}
};
namespace ndyp
{
// helper to provide integers with the same number of digits
template
std::pair lexicographic_pair_helper(T const p, U const maxDigits)
{
auto const digits = count_digits(p);
// append zeros so that `l` has `maxDigits` digits
auto const l = static_cast( p * my_pow10(maxDigits-digits) );
return {l, p};
}
template
using pair_vec
= std::vector::value_type,
typename std::iterator_traits::value_type>>;
template
pair_vec lexicographic_sort(RaIt p_beg, RaIt p_end)
{
if(p_beg == p_end) return pair_vec{};
auto max = *std::max_element(p_beg, p_end);
auto maxDigits = count_digits(max);
pair_vec result;
result.reserve( std::distance(p_beg, p_end) );
for(auto i = p_beg; i != p_end; ++i)
result.push_back( lexicographic_pair_helper(*i, maxDigits) );
using value_type = typename pair_vec::value_type;
std::sort(begin(result), end(result),
[](value_type const& l, value_type const& r)
{
if(l.first < r.first) return true;
if(l.first > r.first) return false;
return l.second < r.second; }
);
return result;
}
}
struct dyp
{
template void operator()(RaIt b, RaIt e)
{
auto pairvec = ndyp::lexicographic_sort(b, e);
std::transform(begin(pairvec), end(pairvec), b,
[](typename decltype(pairvec)::value_type const& e) { return e.second; });
}
};
namespace nnim
{
bool comp(int l, int r)
{
int lv[10] = {}; // probably possible to get this from numeric_limits
int rv[10] = {};
int lc = 10; // ditto
int rc = 10;
while (l || r)
{
if (l)
{
auto t = l / 10;
lv[--lc] = l - (t * 10);
l = t;
}
if (r)
{
auto t = r / 10;
rv[--rc] = r - (t * 10);
r = t;
}
}
while (lc < 10 && rc < 10)
{
if (lv[lc] == rv[rc])
{
lc++;
rc++;
}
else
return lv[lc] < rv[rc];
}
return lc > rc;
}
}
struct nim
{
template void operator()(RaIt b, RaIt e)
{
std::sort(b, e, nnim::comp);
}
};
struct pts
{
template static bool lex_less(T a, T b) {
unsigned la = 1, lb = 1;
for (T t = a; t > 9; t /= 10) ++la;
for (T t = b; t > 9; t /= 10) ++lb;
const bool ll = la < lb;
while (la > lb) { b *= 10; ++lb; }
while (lb > la) { a *= 10; ++la; }
return a == b ? ll : a < b;
}
template void operator()(RaIt b, RaIt e)
{
std::sort(b, e, lex_less::value_type>);
}
};
struct epost
{
static bool compare(int x, int y)
{
static const double limit = .5 * (log(INT_MAX) - log(INT_MAX-1));
double lx = log10(x);
double ly = log10(y);
double fx = lx - floor(lx); // Get the mantissa of lx.
double fy = ly - floor(ly); // Get the mantissa of ly.
return fabs(fx - fy) < limit ? lx < ly : fx < fy;
}
template void operator()(RaIt b, RaIt e)
{
std::sort(b, e, compare);
}
};
struct nyar
{
static bool lexiSmaller(int i1, int i2)
{
int digits1 = count_digits(i1);
int digits2 = count_digits(i2);
double val1 = i1/pow(10.0, digits1-1);
double val2 = i2/pow(10.0, digits2-1);
while (digits1 > 0 && digits2 > 0 && (int)val1 == (int)val2)
{
digits1--;
digits2--;
val1 = (val1 - (int)val1)*10;
val2 = (val2 - (int)val2)*10;
}
if (digits1 > 0 && digits2 > 0)
{
return (int)val1 < (int)val2;
}
return (digits2 > 0);
}
template void operator()(RaIt b, RaIt e)
{
std::sort(b, e, lexiSmaller);
}
};
struct notbad
{
static int up_10pow(int n) {
int ans = 1;
while (ans < n) ans *= 10;
return ans;
}
static bool compare(int v1, int v2) {
int ceil1 = up_10pow(v1), ceil2 = up_10pow(v2);
while ( ceil1 != 0 && ceil2 != 0) {
if (v1 / ceil1 < v2 / ceil2) return true;
else if (v1 / ceil1 > v2 / ceil2) return false;
ceil1 /= 10;
ceil2 /= 10;
}
if (v1 < v2) return true;
return false;
}
template void operator()(RaIt b, RaIt e)
{
std::sort(b, e, compare);
}
};