I have a dataframe with monthly financial data:
In [89]: vfiax_monthly.head()
Out[89]:
year month day d open close high low volume
The easiest way to do this is to use the DataFrame.pct_change() method.
Here is a quick example
In[1]: aapl = get_data_yahoo('aapl', start='11/1/2012', end='11/13/2012')
In[2]: appl
Out[2]:
Open High Low Close Volume Adj Close
Date
2012-11-01 598.22 603.00 594.17 596.54 12903500 593.83
2012-11-02 595.89 596.95 574.75 576.80 21406200 574.18
2012-11-05 583.52 587.77 577.60 584.62 18897700 581.96
2012-11-06 590.23 590.74 580.09 582.85 13389900 580.20
2012-11-07 573.84 574.54 555.75 558.00 28344600 558.00
2012-11-08 560.63 562.23 535.29 537.75 37719500 537.75
2012-11-09 540.42 554.88 533.72 547.06 33211200 547.06
2012-11-12 554.15 554.50 538.65 542.83 18421500 542.83
2012-11-13 538.91 550.48 536.36 542.90 19033900 542.90
In[3]: aapl.pct_change()
Out[3]:
Open High Low Close Volume Adj Close
Date
2012-11-01 NaN NaN NaN NaN NaN NaN
2012-11-02 -0.003895 -0.010033 -0.032684 -0.033091 0.658945 -0.033090
2012-11-05 -0.020759 -0.015378 0.004959 0.013558 -0.117186 0.013550
2012-11-06 0.011499 0.005053 0.004311 -0.003028 -0.291453 -0.003024
2012-11-07 -0.027769 -0.027423 -0.041959 -0.042635 1.116864 -0.038263
2012-11-08 -0.023020 -0.021426 -0.036815 -0.036290 0.330747 -0.036290
2012-11-09 -0.036049 -0.013073 -0.002933 0.017313 -0.119522 0.017313
2012-11-12 0.025406 -0.000685 0.009237 -0.007732 -0.445323 -0.007732
2012-11-13 -0.027502 -0.007250 -0.004251 0.000129 0.033244 0.000129