When stacking a pandas DataFrame
, a Series
is returned. Normally after I stack a DataFrame
, I convert it back into a DataFrame
pd.melt is often useful for converting DataFrames from "wide" to "long" format. You could use pd.melt
here if you convert the id
and date
index levels to columns first:
In [56]: pd.melt(df.reset_index(), id_vars=['id', 'date'], value_vars=['value', 'value2'], var_name='var_name', value_name='value')
Out[56]:
id date var_name value
0 1 2015-09-31 value 100
1 2 2015-09-31 value 95
2 3 2015-09-31 value 42
3 1 2015-09-31 value2 200
4 2 2015-09-31 value2 57
5 3 2015-09-31 value2 27