package testing.project;
public class PalindromeThreeDigits {
public static void main(String[] args) {
int value = 0;
for(int i = 100;i <=999;i+
We suppose the largest such palindrome will have six digits rather than five, because 143*777 = 111111 is a palindrome.
As noted elsewhere, a 6-digit base-10 palindrome abccba is a multiple of 11. This is true because a*100001 + b*010010 + c*001100 is equal to 11*a*9091 + 11*b*910 + 11*c*100. So, in our inner loop we can decrease n by steps of 11 if m is not a multiple of 11.
We are trying to find the largest palindrome under a million that is a product of two 3-digit numbers. To find a large result, we try large divisors first:
We keep track of the largest palindrome found so far in variable q. Suppose q = r·s with r <= s. We usually have m < r <= s. We require m·n > q or n >= q/m. As larger palindromes are found, the range of n gets more restricted, for two reasons: q gets larger, m gets smaller.
The inner loop of attached program executes only 506 times, vs the ~ 810000 times the naive program used.
#include
#include
int main(void) {
enum { A=100000, B=10000, C=1000, c=100, b=10, a=1, T=10 };
int m, n, p, q=111111, r=143, s=777;
int nDel, nLo, nHi, inner=0, n11=(999/11)*11;
for (m=999; m>99; --m) {
nHi = n11; nDel = 11;
if (m%11==0) {
nHi = 999; nDel = 1;
}
nLo = q/m-1;
if (nLo < m) nLo = m-1;
for (n=nHi; n>nLo; n -= nDel) {
++inner;
// Check if p = product is a palindrome
p = m * n;
if (p%T==p/A && (p/B)%T==(p/b)%T && (p/C)%T==(p/c)%T) {
q=p; r=m; s=n;
printf ("%d at %d * %d\n", q, r, s);
break; // We're done with this value of m
}
}
}
printf ("Final result: %d at %d * %d inner=%d\n", q, r, s, inner);
return 0;
}
Note, the program is in C but same techniques will work in Java.