Flow based routing and openflow

后端 未结 6 1656
一生所求
一生所求 2021-02-02 03:56

This may not be the typical stackoverflow question.

A colleague of mine has been speculating that flow-based routing is going to be the next big thing in networking. O

6条回答
  •  盖世英雄少女心
    2021-02-02 04:44

    In order to assess the future of flow-based networking and OpenFlow, here’s the way to think about it.

    1. It starts with the silicon trends: Moore’s Law (2X transistors per 18-24 months), and a correlated but slower improvement in the I/O bandwidth available on a single chip (roughly 2X every 30-36 months). You can now buy full-featured 10GbE single chip switches with 64 ports, and chips which have a mix of 40GbE and 10GbE ports with comparable total I/O bandwidth.

    2. There are a variety of ways physically connect these in a mesh (ignoring the loop-free constraints of spanning tree and the way Ethernet learns MAC addresses). In the high performance computing (HPC) world, a lot of work has been done building clusters with InfiniBand and other protocols using meshes of small switches to network the compute servers. This is now being applied to Ethernet meshes. The geometry of a CLOS or fat-tree topology enables a two stage mesh with a large number of ports. The math is thus: Where n is the # of ports per chip, the number of devices you can connect in a two-stage mesh is (n*2)/2, and the number you can connect in a three-stage mesh is (n*3)/4. While with standard spanning tree and learning, the spanning tree protocol will disable the multi-path links to the second stage, most of the Ethernet switch vendors have some sort of multi-chassis Link Aggregation protocol which gets around the multi-pathing limitation. There is also standards work in this area. Although it might not be obvious, the vast majority of Link Aggregation schemes allocate traffic so all the frames of any given flow take the same path. This is done in order to minimize out-of-order frames so they don’t get dropped by some higher level protocol. They could have chosen to call this “flow based multiplexing” but instead they call it “link aggregation”.

    3. Although the devil is in the details, there are a variety of data center operators and vendors that have concluded they don’t need to have large multi-slot chassis switches in the aggregation/core layer for server connect, instead using meshes of inexpensive 1U or 2U switches.
    4. People have also concluded that eventually you need some kind of management station to set up the configuration of all the switches. Again, drawing from the experience with HPC and InfiniBand, they use what is called an InfiniBand Controller. In the telecom world, most telecom networks have evolved to separate the management and part of the control plane from the boxes that carry the data traffic.

    Summarizing the points above, meshes of Ethernet switches with an external management plane with multipath traffic where flows are kept in order is evolutionary, not revolutionary, and is likely to become mainstream. At least one major company, Juniper, has made a big public statement about their endorsement of this approach. I'd call all of these "flow-based routing".

    Juniper and other vendors’ proprietary approaches notwithstanding, this is an area that cries out for standards. The Open Networking Foundation (ONF), was founded to promote standards in this area, starting with OpenFlow. Within a couple of months, the sixty+ members of ONF will be celebrating their first year anniversary. Each member has, I am led to believe, paid tens of thousands of dollars to join. While the OpenFlow protocol has a ways to go before it is widely adopted, it has real momentum.

提交回复
热议问题